高级检索

基于大数据的DSS融合架构研究

Research on Fusion Architecture of DSS Based on Big Data

  • 摘要: 传统决策支持系统(DSS)技术架构多为传统的基于SMP的数据库集群架构或MPP架构,存储和计算能力构建成本高,扩展性受限、并发性不高,大规模离线计算和流式计算场景下存在性能瓶颈。通过分析大数据时代DSS面临的挑战,提出基于大数据的DSS融合架构。这种架构支持结构化数据、半结构化数据和非结构化数据分析处理,全面满足关系运算、大规模离线分布式计算和流计算要求。

     

    Abstract: Traditional architectures of decision support system are most based on database cluster of SMP or MPP with a high cost of storage and computing. It is difficult to expand, and the performance bottleneck of large scale offline computing and streaming computing. By analyzing the challenges of DSS, this paper puts forward a fusion architecture of DSS based on big data, which satisfies the requirements of relational operations, large-scale offline distributed computing and streaming computing. It supports the analysis and processing of structured data, semi-structured data and unstructured data.

     

/

返回文章
返回