高级检索

核电厂厂用水系统概率安全分析方法研究

曾令刚, 李波, 赵军, 王伟

曾令刚, 李波, 赵军, 王伟. 核电厂厂用水系统概率安全分析方法研究[J]. 南方能源建设, 2020, 7(2): 132-140. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.020
引用本文: 曾令刚, 李波, 赵军, 王伟. 核电厂厂用水系统概率安全分析方法研究[J]. 南方能源建设, 2020, 7(2): 132-140. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.020
Linggang ZENG, Bo LI, Jun ZHAO, ✉. Study on Probabilistic Safety Analysis for Service Water System of Nuclear Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 132-140. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.020
Citation: Linggang ZENG, Bo LI, Jun ZHAO, ✉. Study on Probabilistic Safety Analysis for Service Water System of Nuclear Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 132-140. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.020
曾令刚, 李波, 赵军, 王伟. 核电厂厂用水系统概率安全分析方法研究[J]. 南方能源建设, 2020, 7(2): 132-140. CSTR: 32391.14.j.gedi.issn2095-8676.2020.02.020
引用本文: 曾令刚, 李波, 赵军, 王伟. 核电厂厂用水系统概率安全分析方法研究[J]. 南方能源建设, 2020, 7(2): 132-140. CSTR: 32391.14.j.gedi.issn2095-8676.2020.02.020
Linggang ZENG, Bo LI, Jun ZHAO, ✉. Study on Probabilistic Safety Analysis for Service Water System of Nuclear Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 132-140. CSTR: 32391.14.j.gedi.issn2095-8676.2020.02.020
Citation: Linggang ZENG, Bo LI, Jun ZHAO, ✉. Study on Probabilistic Safety Analysis for Service Water System of Nuclear Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 132-140. CSTR: 32391.14.j.gedi.issn2095-8676.2020.02.020

核电厂厂用水系统概率安全分析方法研究

基金项目: 

中国能建广东院科技项目“核电厂最终热阱技术研究” EV04111W

详细信息
    作者简介:

    曾令刚  1978-,男,湖北云梦人,工学硕士,从事火力发电厂和核电厂冷却水工程勘测设计研究工作(e-mail)zenglinggang@gedi.com.cn

    李波1976-,男,陕西西安人,广东省电力设计研究院有限公司,教授级高级工程师,武汉水利电力大学学士,主要从事发电厂水工设计(e-mail)libo@gedi.com.cn

    赵军(通信作者)1980-,男,山东临沂人,清华大学,副研究员,清华大学工学博士,主要从事核电厂概率风险评价工作(e- mail)zhaojun@tsinghua.edu.cn

    王伟1987-,男,山东日照人,香港城市大学,客座助理教授,米兰理工大学博士,主要从事复杂工业系统可靠性、安全性、风险分析等工作(e- mail)wwang326@cityu.edu.hk

  • 中图分类号: TL4

Study on Probabilistic Safety Analysis for Service Water System of Nuclear Power PlantEn

  • 摘要:
        目的   厂用水系统作为核电厂的最终热阱对核电厂的运行及事故缓解具有重要意义。
        方法   采用故障树方法对正常运行工况与停堆工况在寒冷与非寒冷天气条件下的四种情况进行模化,并分析了厂用水系统作为事故缓解手段的可靠性;蒙特卡罗方法被用于分析该系统作为始发事件贡献因素的可运行性;同时,由敏感性分析得到了设备失效率、定期维修周期与年平均不可用时间的关系并就此给出了相关优化建议。
        结果   定量化结果给出厂用水系统对于不同任务时间的不可靠度,其中重点关注的正常运行工况在非寒冷天气下的不可靠度为1.47E-01(任务时间1年),事故缓解过程的不可靠度为4.10E-04(任务时间72 h);停堆工况非寒冷天气下的不可靠度为6.45E-03(任务时间96 h)。丧失厂用水作为始发事件的发生频率约2.0E-03/年,系统的年平均不可用时间约3.4 h。
        结论   结果表明:海水预处理系统作为厂用水冷却塔的补水水源,对厂用水系统不可靠度贡献较大,并且该系统中贡献最为显著的主给水管道上电动隔离阀的运行失效,因没有冗余设计而成为单点故障。此外,相比于降低设备的失效率,缩短定期维修周期对于降低年平均不可用时间更具有效性和可操作性。
    Abstract: Introduction The service water system as the ultimate heat sink is of great significance for the operation and accident mitigation of nuclear power plants.
        Method   In this paper, the fault tree was built to model the full power and shutdown modes of the investigated plant under cold and non-cold weather conditions respectively, and then to assess the reliability of service water system as an accident mitigation measure. The Monte Carlo method was used to analyse the operability of the system as an initiating event. Relationships between equipment failure rate, maintenance cycle and the annual average unavailability were also attained via sensitivity analysis.
        Result   Quantitative results show the failure rates of service water system for different mission time, particularly under the conditions of non-cold weather at full power the failure rates are 1.47E-01 per year and 4.10E-04 per 72 hours (mission time in accident mitigation process), and at shutdown mode the corresponding failure rate is 6.45E-03 per 96 hours. The frequency of the loss of service water is about 2.0E-03 per year and the annual average unavailability time of the system is about 3.4 hours.
        Conclusion   The results suggest that seawater pretreatment system has more significant influence on the unreliability of service water system, of which the operation failure of electric isolation valve at the main pipeline is the dominant contributor due to having no redundant design. In addition, shortening regular maintenance cycle will be a more effective and operable way to reduce the annual average unavailability time compared with reducing the failure rates of components.
  • 图  1   厂用水系统简化工作流程图

    Figure  1.   Workflow of service water system

    图  2   厂用水系统冷却塔补水工作流程

    Figure  2.   Workflow of water supply for the cooling tower of SWS

    图  3   厂用水系统的平均可用度

    Figure  3.   Average availability of service water system

    图  4   系统年平均不可用度与预防性维修周期的关系

    Figure  4.   Relationship between the annual average unavailability of service water system and the preventive maintenance cycle

    图  5   始发事件发生频率与预防性维修周期的关系

    Figure  5.   Relationship between frequency of the initiating event and preventive maintenance cycle

    图  6   系统年平均不可用度与电动隔离阀运行失效率的关系

    Figure  6.   Relationship between the annual average unavailability of service water syste and the operating failure rate of the electric isolation valve

    图  7   始发事件发生频率与电动隔离阀运行失效率的关系

    Figure  7.   Relationship between frequency of the initiating event and failure rate of electric isolation valve

    表  1   故障树定量化结果

    Table  1   Quantitative results of fault tree analysis

    故障树顶事件失效率(不可靠度)任务时间/ h
    均值5th95th
    SWS1正常运行-非寒冷天气SWS失效1.47E-014.52E-024.01E-018 760
    4.10E-048.50E-051.64E-0372
    SWS2停堆-非寒冷天气SWS失效6.45E-034.59E-031.00E-0296
    SWS3正常运行-寒冷天气SWS失效2.63E-037.61E-047.59E-031 440
    1.07E-043.98E-052.37E-0472
    SWS4停堆-寒冷天气SWS失效3.58E-031.90E-038.01E-0396
    下载: 导出CSV

    表  2   故障树SWS1的FV重要度(前5)

    Table  2   F-V importance of fault tree SWS1 (Top 5)

    序号说明FV
    1A列支持电源失效2.06E-01
    2B列支持电源失效2.05E-01
    3电动阀V1004X不能保持开1.68E-01
    4电动泵MP01A运行失效4.22E-02
    5电动泵MP01B运行失效4.21E-02
    下载: 导出CSV

    表  3   故障树SWS1的RAW重要度(前5)

    Table  3   RAW importance of fault tree SWS1 (Top 5)

    序号说明RAW
    1电动阀V1004X不能保持开7.23E+00
    2海水预处理系统泵2共因运行失效7.23E+00
    3V002A/B共因运行失效7.23E+00
    4V037A/B共因运行失效7.23E+00
    5海水预处理系统电动阀2共因运行失效7.23E+00
    下载: 导出CSV

    表  4   故障树SWS1的敏感性分析(前5)

    Table  4   Sensitivity analysis for fault tree SWS1 (Top 5)

    序号说明敏感度
    1A列支持电源失效3.27E+00
    2B列支持电源失效3.26E+00
    3电动阀V1004X不能保持开2.96E+00
    4电动泵MP01A运行失效1.43E+00
    5电动泵MP01B运行失效1.43E+00
    下载: 导出CSV
  • [1] 杨志超,刘雷雷. 内部事件概率安全评价在核电厂设计中的应用 [J]. 中国核电,2019,12(5):578-585.

    YANGZ C,LIUL L. Applications of internal events probabilistic safety assessment in nuclear power plant's design [J]. China Nuclear Power Engineering,2019,12(5):578-585.

    [2] 倪曼,宫宇,肖军. 基于故障树的核电厂全部丧失热阱始发事件频率研究 [J]. 科技通报,2018,34(2):237-241.

    NIM,GONGY,XIAOJ. Research on initiating event frequency of loss of ultimate heat sink based on fault tree [J]. Bulletin of Science and Technology,2018,34(2):237-241.

    [3] 玉宇,童节娟,赵军,等. 应用蒙特卡罗方法模拟核电厂丧失设备冷却水系统始发事件的频率 [J]. 核动力工程,2010,31(4):57-60.

    YUY,TONGJ J,ZHAOJ,et al. Application of MC method to simulate initiating event frequency of loss of equipment cooling water system in nuclear power plants [J]. Nuclear Power Engineering,2010,31(4):57-60.

    [4] 肖刚,李天柁. 系统可靠性分析中的蒙特卡罗方法 [M]. 北京:科学出版社,2003.

    XIAOG,LIT T. Monte carlo method in system reliability analysis [M]. Beijing:Science Press,2003.

    [5] 左建业,郝宗敏. 基于蒙特卡洛仿真的某直升机系统任务可靠度计算 [J]. 电子元器件与信息技术,2019,22(4):55-58.

    ZUOJ Y,HAOZ M. Mission reliability calculation of a helicopter system based on monte-carlo simulation [J]. Electronic Component and Information Technology,2019,22(4):55-58.

    [6] 牛群凯,朱瑞,朱全军,等. 基于蒙特卡洛模拟法的输电塔架结构可靠度分析 [J]. 上海电力学院学报,2018,34(3):291-296.

    NIUQ K,ZHUR,ZHUQ J,et al. Reliability analysis of transmission tower structure based on monte carlo method [J]. Journal of Shanghai University of Electric Power,2018,34(3):291-296.

    [7] 李飞. 国产DCS系统在超超临界机组可靠性应用研究 [J]. 南方能源建设,2016,3(3):85-90.

    LIF. Reliability application and research of domestic DCS system in ultra-supercritical unit [J]. Southern Energy Construction,2016,3(3):85-90.

    [8] 国家核安全局. 中国核电厂设备可靠性数据报告 [R]. 北京:国家核安全局,2015.

    National Nuclear Safety Administration. Reliability data report of nuclear power plant equipment in China [R]. Beijing:National Nuclear Safety Administration,2015.

    [9]

    HAASLD F,ROBERTSN H,VESELYW E,et al. Fault tree handbook(NUREG-0492) [R].Washington D.C.:U.S. Nuclear Regulatory Commission,1981.

    [10]

    POLOSKIJ P,MARKSBERRYD G,et al. Rates of initiating events at U.S. nuclear power plants:1987-1995 (NUREG/CR-5750) [R]. Washington,D. C.:U.S. Nuclear Regulatory Commission,1998.

图(7)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-12
  • 修回日期:  2020-02-17
  • 刊出日期:  2020-06-24

目录

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回