高级检索

基于VSG虚拟阻抗可行域的次同步振荡抑制方法

Sub-Synchronous Oscillation Suppression Based on VSG Virtual Impedance Feasible Domains

  • 摘要:
    目的 虚拟同步发电机(Virtual Synchronous Generator,VSG)在弱电网接入下,系统会呈现负阻尼特性,引发次同步振荡,导致系统失稳。虚拟阻抗能够有效抑制次同步振荡,但其不同取值会影响抑制效果。
    方法 针对此问题,文章提出在网侧引入虚拟阻抗以抑制次同步振荡的可行域确定方法,以采用VSG控制并网的直驱永磁风电系统为例,通过幅值、相角和电气谐振所对应的电气矢量,揭示次同步振荡的抑制机理。通过选取合适的虚拟阻抗改变系统阻抗特性,构建VSG序阻抗模型,以输出功率和系统稳定性为约束条件,最终确定虚拟阻抗可行域。
    结果 通过MATLAB/SIMULINK仿真,选取不同的虚拟阻抗值参数,观测电压电流、功率与频率的变化,验证了虚拟阻抗可行域的有效性与合理性。仿真结果证明弱电网下在网侧引入虚拟阻抗能够抑制次同步振荡,同时在可行域范围内,虚拟电感取值较大、虚拟电阻取值较小的条件下,系统抑制次同步振荡的效果更好。
    结论 在弱电网条件下,虚拟阻抗满足其可行域,可确保系统有足够的功率输出能力并有效抑制次同步振荡,从而保障系统稳定运行。

     

    Abstract:
    Objective The virtual synchronous generator (VSG) system exhibits negative damping characteristics under weak grid connection, which triggers subsynchronous oscillations and leads to system instability. The virtual impedance can effectively suppress the sub-synchronous oscillations, but different parameter values result in varying suppression effects.
    Method To address this problem, this paper proposed a feasible domain determination method for adding virtual impedance on the grid side to suppress the subsynchronous oscillations. Taking the direct-drive permanent magnet wind power system with VSG control as an example, the suppression mechanism was analyzed through amplitude, phase angle, and electrical vectors associated with electrical resonance. Virtual impedance was introduced to alter the system’s impedance characteristics, and a VSG sequence impedance model was established. The feasible domain of the virtual impedance was then determined under the constraints of output power and system stability.
    Result The effectiveness and validity of the feasible domain were verified through MATLAB/SIMULINK simulations by selecting different virtual impedance values and observing voltage, current, power and frequency responses. The simulation results demonstrate that introducing virtual impedance at the grid side can effectively suppress subsynchronous oscillations under weak grid conditions. Moreover, better suppression is achieved when the virtual inductance is relatively large and the virtual resistance is relatively small within the feasible domain.
    Conclusion Under weak grid conditions, ensuring that the virtual impedance lies within the feasible domain can provide sufficient power output capability and suppress subsynchronous oscillations, thereby guaranteeing stable system operation.

     

/

返回文章
返回