高级检索

二氧化碳催化加氢合成燃料的微通道反应器

骆攀, 谈文杰, 胡恩祥, 杨应举, 华芷萱, 刘晶

骆攀,谈文杰,胡恩祥,等. 二氧化碳催化加氢合成燃料的微通道反应器[J]. 南方能源建设,2024,11(4):16-22.. DOI: 10.16516/j.ceec.2024.4.02
引用本文: 骆攀,谈文杰,胡恩祥,等. 二氧化碳催化加氢合成燃料的微通道反应器[J]. 南方能源建设,2024,11(4):16-22.. DOI: 10.16516/j.ceec.2024.4.02
LUO Pan, TAN Wenjie, HU Enxiang, et al. Microchannel reactor for hydrocarbon fuel synthesis from CO2 catalytic hydrogenation [J]. Southern energy construction, 2024, 11(4): 16-22. DOI: 10.16516/j.ceec.2024.4.02
Citation: LUO Pan, TAN Wenjie, HU Enxiang, et al. Microchannel reactor for hydrocarbon fuel synthesis from CO2 catalytic hydrogenation [J]. Southern energy construction, 2024, 11(4): 16-22. DOI: 10.16516/j.ceec.2024.4.02
骆攀,谈文杰,胡恩祥,等. 二氧化碳催化加氢合成燃料的微通道反应器[J]. 南方能源建设,2024,11(4):16-22.. CSTR: 32391.14.j.ceec.2024.4.02
引用本文: 骆攀,谈文杰,胡恩祥,等. 二氧化碳催化加氢合成燃料的微通道反应器[J]. 南方能源建设,2024,11(4):16-22.. CSTR: 32391.14.j.ceec.2024.4.02
LUO Pan, TAN Wenjie, HU Enxiang, et al. Microchannel reactor for hydrocarbon fuel synthesis from CO2 catalytic hydrogenation [J]. Southern energy construction, 2024, 11(4): 16-22. CSTR: 32391.14.j.ceec.2024.4.02
Citation: LUO Pan, TAN Wenjie, HU Enxiang, et al. Microchannel reactor for hydrocarbon fuel synthesis from CO2 catalytic hydrogenation [J]. Southern energy construction, 2024, 11(4): 16-22. CSTR: 32391.14.j.ceec.2024.4.02

二氧化碳催化加氢合成燃料的微通道反应器

基金项目: 省部共建煤炭高效利用与绿色化工国家重点实验室开放课题“过渡金属/多孔炭界面优化调控CO2催化加氢转化性能的机理研究”(2022-K46);深圳市基础研究项目“面向CO2电催化转化的铜合金材料高通量筛选和性能调控研究”(JCYJ20230807143703008)
详细信息
    作者简介:

    骆攀,2004-,男,华中科技大学本科在读,主要从事二氧化碳热催化还原合成碳氢化合物的相关研究工作(e-mail)luo_pan@hust.edu.cn

    杨应举,1990-,男,博士,讲师,主要从事二氧化碳转化利用、污染物排放控制、氢能绿色制取等研究工作(e-mail)yangyingju@hust.edu.cn

    通讯作者:

    杨应举,(e-mail)yangyingju@hust.edu.cn

  • 中图分类号: TK91;TK16;TQ511

Microchannel Reactor for Hydrocarbon Fuel Synthesis from CO2 Catalytic HydrogenationEn

  • 摘要:
      目的  CO2催化加氢合成燃料是一种经济可行、可大规模实施的CO2利用技术,能够解决环境和资源短缺的问题,近年来获得了国内外广泛的关注。文章旨在研究开发1种CO2催化加氢合成碳氢燃料的微通道反应器。
      方法  通过采用热力学计算-催化剂制备-反应器设计-结构优化-性能测试的设计思路进行分析。
      结果  热力学理论分析表明:CO2催化加氢可以形成碳氢燃料;开发了6种铁基催化剂,从而提高碳氢燃料合成的反应速率;基于流体数值模拟,设计并优化了微通道反应器的结构,该反应器具有结构简单紧凑、传热传质能力强等优点。实验结果表明:Zn-Fe催化剂表现出最好的CO2催化加氢合成低碳烯烃性能,CO2转化率和低碳烯烃选择性分别为32%和44%。
      结论  设计的微通道反应器具备CO2资源化利用合成碳氢燃料的功能,对我国应对气候变化、双碳目标实现以及碳氢燃料产业发展具有重要的意义。
    Abstract:
      Introduction  CO2 catalytic hydrogenation for fuel synthesis is an economically feasible and large-scale implementable technology for CO2 utilization, which can solve the problems of environment and resource shortage, and has gained wide attention in recent years. In this work, a microchannel reactor for CO2 catalytic hydrogenation to synthesize hydrocarbon fuels is developed.
      Method  Based on the design concept of thermodynamic calculation, catalyst preparation, reactor design, structure optimization and performance testing, an anlysis was carried out.
      Result  The thermodynamic analysis shows that hydrocarbon fuels can be produced from CO2 catalytic hydrogenation. Six iron-based catalysts are developed to improve the reaction rate of hydrocarbon fuel synthesis. Based on the computational fluid dynamics (CFD) simulation, the structure of the microchannel reactor is designed and optimized. The microchannel reactor has the advantages of simple-compact structure and strong heat-mass transfer capability. The experimental results show that the Zn-Fe catalyst exhibits the best performance of CO2 catalytic hydrogenation for the synthesis of low-carbon olefins. CO2 conversion and low-carbon olefins selectivity are 32% and 44% respectively.
      Conclusion  The microchannel reactor designed in this work has the dual functions of CO2 utilization for hydrocarbon fuel synthesis, which is of great significance to China's response to climate change, the realization of the dual-carbon target and the development of hydrocarbon fuel industry.
  • 图  1   热力学计算结果

    Figure  1.   Thermodynamic calculation results

    图  2   反应器内质量流量分布云图

    Figure  2.   Mass flow distribution in the reactor

    图  3   反应器内温度分布云图

    Figure  3.   Temperature distribution in the reactor

    图  4   反应单元设计

    Figure  4.   Reaction unit design

    图  5   反应器设计

    Figure  5.   Reactor design

    图  6   反应器设计

    Figure  6.   Reactor design

    图  7   微通道反应器内流速和压力分布云图

    Figure  7.   Flow rate and pressure distribution in the microchannel reactor

    图  8   不同Fe基催化剂的CO2催化加氢反应性能

    Figure  8.   Catalytic performance of different Fe-based catalysts in CO2 hydrogenation

  • [1] 罗海中, 吴大卫, 范永春, 等. 碳中和背景下CCUS技术发展及广东离岸封存潜力评估 [J]. 南方能源建设, 2023, 10(6): 1-13. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.001.

    LUO H Z, WU D W, FAN Y C, et al. Development of CCUS technology in the context of carbon neutrality and assessment of the potential for offshore storage in Guangdong province [J]. Southern energy construction, 2023, 10(6): 1-13. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.001.

    [2]

    SAEIDI S, NAJARI S, HESSEL V, et al. Recent advances in CO2 hydrogenation to value-added products: current challenges and future directions [J]. Progress in energy and combustion science, 2021, 85: 100905. DOI: 10.1016/j.pecs.2021.100905.

    [3]

    YANG Y J, ZHANG J C, LIU J, et al. Nickel nanoparticles encapsulated in SSZ-13 cage for highly efficient CO2 hydrogenation [J]. Energy & fuels, 2021, 35(16): 13240-13248. DOI: 10.1021/acs.energyfuels.1c01881.

    [4]

    HUA Z X, YANG Y J, LIU J. Direct hydrogenation of carbon dioxide to value-added aromatics [J]. Coordination chemistry reviews, 2023, 478: 214982. DOI: 10.1016/j.ccr.2022.214982.

    [5]

    KARAKAYA C, PARKS J. Thermochemical processes for CO2 hydrogenation to fuels and chemicals: challenges and opportunities [J]. Applications in energy and combustion science, 2023, 15: 100171. DOI: 10.1016/j.jaecs.2023.100171.

    [6]

    JIANG X, NIE X W, GUO X W, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis [J]. Chemical reviews, 2020, 120(15): 7984-8034. DOI: 10.1021/acs.chemrev.9b00723.

    [7]

    JIANG Y J, WANG K Z, WANG Y, et al. Recent advances in thermocatalytic hydrogenation of carbon dioxide to light olefins and liquid fuels via modified fischer-tropsch pathway [J]. Journal of CO2 utilization, 2023, 67: 102321. DOI: 10.1016/j.jcou.2022.102321.

    [8]

    GAO X H, ATCHIMARUNGSRI T, MA Q X, et al. Realizing efficient carbon dioxide hydrogenation to liquid hydrocarbons by tandem catalysis design [J]. EnergyChem, 2020, 2(4): 100038. DOI: 10.1016/j.enchem.2020.100038.

    [9]

    FRANCO F, RETTENMAIER C, JEON H S, et al. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials [J]. Chemical society reviews, 2020, 49(19): 6884-6946. DOI: 10.1039/D0CS00 835D.

    [10]

    ARTZ J, MÜLLER T E, THENERT K, et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment [J]. Chemical reviews, 2018, 118(2): 434-504. DOI: 10.1021/acs.chemrev.7b00435.

    [11]

    QIAO J L, LIU Y Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels [J]. Chemical society reviews, 2014, 43(2): 631-675. DOI: 10.1039/C3CS60323G.

    [12]

    YANG Z Y, QI Y, WANG F L, et al. State-of-the-art advancements in photo-assisted CO2 hydrogenation: recent progress in catalyst development and reaction mechanisms [J]. Journal of materials chemistry A, 2020, 8(47): 24868-24894. DOI: 10.1039/D0TA08781E.

    [13]

    YANG S Y, ZHANG L, WANG Z J. Advances in the preparation of light alkene from carbon dioxide by hydrogenation [J]. Fuel, 2022, 324: 124503. DOI: 10.1016/j.fuel.2022.124503.

    [14]

    ZHONG J W, YANG X F, WU Z L, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol [J]. Chemical society reviews, 2020, 49(5): 1385-1413. DOI: 10.1039/C9CS00614A.

    [15]

    ASHOK J, PATI S, HONGMANOROM P, et al. A review of recent catalyst advances in CO2 methanation processes [J]. Catalysis today, 2020, 356: 471-489. DOI: 10.1016/j.cattod.2020.07.023.

    [16]

    WEI J, YAO R W, HAN Y, et al. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons [J]. Chemical society reviews, 2021, 50(19): 10764-10805. DOI: 10.1039/D1CS00260K.

    [17]

    BAILERA M, LISBONA P, ROMEO L M, et al. Power to gas projects review: lab, pilot and demo plants for storing renewable energy and CO2 [J]. Renewable and sustainable energy reviews, 2017, 69: 292-312. DOI: 10.1016/j.rser.2016.11.130.

    [18]

    WULF C, LINBEN J, ZAPP P. Review of power-to-gas projects in Europe [J]. Energy procedia, 2018, 155: 367-378. DOI: 10.1016/j.egypro.2018.11.041.

    [19]

    THEMA M, BAUER F, STERNER M. Power-to-gas: electrolysis and methanation status review [J]. Renewable and sustainable energy reviews, 2019, 112: 775-787. DOI: 10.1016/j.rser.2019.06.030.

    [20] 郭嘉懿, 何育荣, 马晶晶, 等. 二氧化碳催化加氢制甲醇研究进展 [J]. 洁净煤技术, 2023, 29(4): 49-64. DOI: 10.13226/j.issn.1006-6772.RM22092601.

    GUO J Y, HE Y R, MA J J, et al. Research progress on catalytic hydrogenation of carbon dioxide to methanol [J]. Clean coal technology, 2023, 29(4): 49-64. DOI: 10.13226/j.issn.1006-6772.RM22092601.

    [21] 云梁, 李国峰. CO2催化加氢制甲醇技术研究进展 [J]. 工业催化, 2022, 30(4): 13-17. DOI: 10.3969/j.issn.1008-1143.2022.04.003.

    YUN L, LI G F. Research progress on catalytic hydrogenation of CO2 to methanol [J]. Industrial catalysis, 2022, 30(4): 13-17. DOI: 10.3969/j.issn.1008-1143.2022.04.003.

    [22]

    WANG D, XIE Z H, POROSOFF M D, et al. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics [J]. Chem, 2021, 7(9): 2277-2311. DOI: 10.1016/j.chempr.2021.02.024.

    [23]

    MARQUES MOTA F, KIM D H. From CO2 methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability [J]. Chemical society reviews, 2019, 48(1): 205-259. DOI: 10.1039/C8CS00527C.

    [24]

    POROSOFF M D, YAN B H, CHEN J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities [J]. Energy & environmental science, 2016, 9(1): 62-73. DOI: 10.1039/C5EE02657A.

图(8)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-23
  • 修回日期:  2023-07-19
  • 网络出版日期:  2024-07-11
  • 刊出日期:  2024-07-29

目录

    LIU Jing

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回