高级检索

电力设备载流连接板温升研究

吴冬文, 曾晗, 吴花

吴冬文, 曾晗, 吴花. 电力设备载流连接板温升研究[J]. 南方能源建设, 2015, 2(S1): 71-75. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.015
引用本文: 吴冬文, 曾晗, 吴花. 电力设备载流连接板温升研究[J]. 南方能源建设, 2015, 2(S1): 71-75. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.015
WU Dongwen, ZENG Han, WU Hua. Temperature Rise Studies on Electrical Equipment Current-carrying Patch Board[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 71-75. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.015
Citation: WU Dongwen, ZENG Han, WU Hua. Temperature Rise Studies on Electrical Equipment Current-carrying Patch Board[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 71-75. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.015
吴冬文, 曾晗, 吴花. 电力设备载流连接板温升研究[J]. 南方能源建设, 2015, 2(S1): 71-75. CSTR: 32391.14.j.gedi.issn2095-8676.2015.S1.015
引用本文: 吴冬文, 曾晗, 吴花. 电力设备载流连接板温升研究[J]. 南方能源建设, 2015, 2(S1): 71-75. CSTR: 32391.14.j.gedi.issn2095-8676.2015.S1.015
WU Dongwen, ZENG Han, WU Hua. Temperature Rise Studies on Electrical Equipment Current-carrying Patch Board[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 71-75. CSTR: 32391.14.j.gedi.issn2095-8676.2015.S1.015
Citation: WU Dongwen, ZENG Han, WU Hua. Temperature Rise Studies on Electrical Equipment Current-carrying Patch Board[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 71-75. CSTR: 32391.14.j.gedi.issn2095-8676.2015.S1.015

电力设备载流连接板温升研究

详细信息
    作者简介:

    吴冬文(1977),男,江西耒城人,高级工程师,博士,主要从事变电设备检修管理工作。khanzeng@foxmail.com。

  • 中图分类号: TM506

Temperature Rise Studies on Electrical Equipment Current-carrying Patch BoardEn

  • 摘要: 针对电力设备载流故障与接触电阻、设备载流、外部环境温度及其结构尺寸之间的关系,研究建立了高压电气设备载流连接板温升故障的有限元计算方法,借助传热学理论,建立温升模型。并针对一起35 kV电流互感器载流连接板仿真发热故障进行了ANSYS计算分析,重点研究了载流连接板通过的电流大小、外部环境温度及连接板尺寸对其温度升高的影响。该分析结果可以用于对红外测温过程中电气设备电流型致热故障进行参考分析,并对实际设计中生产厂家选用高压电气设备一次电流连接板尺寸大小有一定的指导意义。
    Abstract: According to the relationship between the electrical equipment current-carrying fault and contact resistance, loaded-current, surface environmental temperature and board dimension,this paper study and set up high-voltage electrical equipment current-carrying patch board fault temperature rise fault finite element approach, by means of heat transfer theory, build temperature rise model. According to a 35 kV current transformer loaded-current patch board heating-fault, this paper analysis by the ANSYS simulation calculation way,and research focus on current-carrying temperature rais effect of current size, surface environmental temperature and board dimension. Analytic result has important references for the current-heating fault judgment of the electrical equipment, and has important references for the manufactures selecting board dimension on high-voltage electrical equipment.
  • 液体电介质的绝缘性能对于电力系统的安全稳定运行具有重要意义。学者发现高纯水、硝基苯以及变压器油等液体电介质在不同电极材料情况下,其击穿特性有所不同[,,]。由此可见,电极材料是影响液体电介质击穿性能的重要因素,然而其影响机理目前尚不明确。液体电介质的绝缘性能与其内部的电场分布密切相关[]。研究表明在高电压作用下液体电介质中空间电荷的存在会畸变液体中的电场分布,对液体的绝缘性能产生重要的影响[,,]。测量液体电介质中的电场分布是研究其击穿机理以及降低击穿发生的可能性的前提。

    克尔电光效应法广泛应用于液体电介质的电场分布测量,具有测量精度高、抗电磁干扰能力强的优点[,]。文章中我们选用了无色透明,无毒性、克尔常数高的碳酸丙烯酯作为液体电介质,选用不锈钢、黄铜、铝三种金属材料组成电极对,利用克尔电光方法分别测量了冲击电压作用下碳酸丙烯酯不同电极材料下的击穿电压与电场分布情况。根据测量结果,我们分析得到了不同电极材料对碳酸丙烯酯冲击击穿特性的影响机理。

    文中选取了不锈钢、黄铜与铝三种金属制成的平行板电极材料,其尺寸为100 mm×12 mm×5 mm,电极之间的间距为3 mm。电极的边缘经过抛光处理以避免边缘放电。文章根据IEC60897标准进行了冲击击穿测试。对于平行板电极,击穿电压不存在极性效应,我们采用标准负极性操作冲击电压(250 μs/2 500 μs)对碳酸丙烯酯进行冲击击穿测试。测试时先从一个较低幅值的冲击电压开始施加,然后以1~2 kV的增幅增加冲击电压的幅值直至击穿发生。为了确保测量结果的准确性,每个幅值的冲击电压至少重复施加3次。相邻的冲击电压之间的时间间隔为2 min,通过示波器来记录击穿电压的幅值与时间,由于间隙为mm级,击穿发生时刻可能在波头或波尾,如果在波头击穿,击穿电压幅值取击穿时刻实际值,如果击穿发生在波尾,击穿电压幅值取峰值。对于每种电极材料,以上的测量过程重复10次,以此求得击穿电压的平均值。

    碳酸丙烯酯电场测量系统如图1所示,该测量系统由冲击电压装置、克尔电光测量装置以及光信号接收装置三部分组成。冲击电压波形由马克思发生器产生,经过分压器由示波器测量。由He-Ne激光器发出的波长为633 nm的激光经过扩束镜、起偏器、1/4波片、克尔盒、1/4波片、检偏器,由电荷耦合器件(Charge Coupled Device, CCD)接收。起偏器与检偏器的光轴平行,构成平行偏振。电极的材料、尺寸与击穿实验中相同。CCD的触发信号由冲击电压发生器提供。所有的光学元件放置于光学防震平台上。实验时,实验装置的周围为黑暗的环境以排除外界自然光对实验测量的影响。测量时施加的冲击电压波形为幅值为25 kV的负极性标准操作波。根据克尔效应的原理对由CCD接收得到的电光图进行反算[],可以得到碳酸丙烯酯在冲击电压作用下的电场分布。

    图 1 碳酸丙烯酯电场测量系统
    图  1  碳酸丙烯酯电场测量系统
    Figure  1.  Electric field measurement system for propylene carbonate

    表1中所示的为不同电极材料下碳酸丙烯酯的击穿电压性能。如表1中的数据所示,不同电极材料下碳酸丙烯酯的负极性冲击击穿电压不同,不锈钢电极情况下的击穿电压幅值比黄铜电极情况下高13.8%,比铝电极情况下则高21.2%。此外,黄铜电极的情况下击穿电压幅值比铝电极情况下高6.5%。不仅三种不同电极材料下的液体击穿电压不同,液体击穿的时间也不同,这是因为三种电极情况下液体中的空间电荷注入情况不同,导致电场寄畸变程度不同。

    表  1  碳酸丙烯酯负极性冲击击穿实验测量结果
    Table  1.  Test results of negative impulse breakdown for propylene carbonate
    极板材料 击穿电压均值/kV 标准差 击穿时间均值/μs
    不锈钢 44.6 1.4 425
    39.2 1.5 507
    36.8 1.1 420
    下载: 导出CSV 
    | 显示表格

    图2所示的是由克尔电光测量系统测量得到的CCD电光图,测量原理详见文献[]。图中的明暗条纹代表等势线。由图中可以看出,电极之间存在明暗条纹,这说明电极之间的电场是不均匀的,存在一定程度的电场畸变。铝、不锈钢与黄铜电极之间的条纹数量分别在1 150 μs、1 300 μs与1 500 μs时减少,这说明了不同的电极材料具有不同的电荷注入能力,这导致了电极之间的电场畸变程度的不同。

    图 2 不同电极材料下碳酸丙烯酯中克尔电光图
    图  2  不同电极材料下碳酸丙烯酯中克尔电光图
    Figure  2.  Kerr electric-optic images for propylene carbonate under different electric materials

    根据克尔效应的原理对图2中的电光图进行反算,可以得到不同电极材料下碳酸丙烯酯在冲击电压作用下电极之间的电场分布情况,如图3所示。对比三种电极材料下液体中的电场分布情况可以看出,相同时刻不同电极之间电场畸变程度有着明显的差异。

    图 3 不同电极材料下碳酸丙烯酯中电场分布
    图  3  不同电极材料下碳酸丙烯酯中电场分布
    Figure  3.  Electric field distribution of propylene carbonate under different electric materials

    在外施电压的作用下,液体电介质中电极之间存在着电子电场发射、电化学反应以及双电层等复杂的现象,一定量的空间电荷会从电极注入到液体当中[,]。这些空间电荷会畸变液体中原来的几何电场分布,减弱电极附近的电场强度而增大液体中的电场强度。根据高斯定理,平行板电极情况下液体中电场分布曲线的斜率与液体中注入的电荷成正比。而液体中空间电荷的存在会畸变液体中的电场分布,液体中空间电荷的量越大,液体中电场的畸变程度越高。因此,我们推断不同金属的电极材料在冲击电压作用下空间电荷的注入能力不同,由此导致了不同电极材料下液体中电场的畸变程度不同。文中定义液体中的电场畸变率D为某一时刻,液体中瞬时电场与平均电场的差值的最大值与平均电场之比,如公式(1)所示。

    ((1))

    根据此定义与图3中的电场分布,我们得到了不同电极材料下不同时刻碳酸丙烯酯中的电场畸变率,如表2所示。从表2可以看出,黄铜电极与不锈钢电极的情况下电场最大畸变发生在750 μs,而铝电极情况下发生在900 μs。大部分的时间范围内,铝电极情况下的电场畸变率最高,黄铜电极情况下次之,而不锈钢电极情况下最低。这意味着在相同的电场作用下,铝电极、黄铜电极与不锈钢电极情况下碳酸丙烯酯中的电场畸变率依次递减。这可能是三种不同材料下碳酸丙烯酯冲击击穿性能差异的原因。

    表  2  不同电极材料下碳酸丙烯酯中电场畸变率
    Table  2.  Electric field distortion rate for propylene carbonate under different electrodes
    时间/μs (电场畸变率/铝电极)/% (电场畸变率/黄铜电极)/% (电场畸变率/不锈钢电极)/%
    250 13.0 10.9 9.8
    500 20.3 17.2 13.5
    750 23.6 27.8 23.5
    900 29.2 25.0 23.4
    1 150 19.6 18.1 15.2
    1 300 19.1 12.4 7.1
    1 500 17.7 5.8 2.9
    下载: 导出CSV 
    | 显示表格

    文章分别测量了碳酸丙烯酯液体电介质在不锈钢、黄铜以及铝电极材料情况下的负极性冲击击穿性能与液体中的电场分布情况。根据实验测量结果,得到了以下结论:

    1)电极材料对碳酸丙烯酯的冲击击穿特性具有重要的影响,铝、黄铜以及不锈钢电极情况下,碳酸丙烯酯的冲击击穿电压依次增大。

    2)不同电极材料在冲击电压作用下空间电荷的注入能力不同,不锈钢、黄铜以及铝电极的电荷注入能力依次减小。

    3)由于电荷注入能力的不同,导致不同电极材料下碳酸丙烯酯中电场畸变程度不同,这是电极材料对碳酸丙烯酯冲击特性差异化的原因。

  • 期刊类型引用(1)

    1. 黄继盛,刘红文,胡逸. 刀板电极下纳米粒子对液体击穿电压的影响. 应用科技. 2022(05): 115-119 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  307
  • HTML全文浏览量:  48
  • PDF下载量:  28
  • 被引次数: 1
出版历程
  • 收稿日期:  2015-10-31

目录

WU Hua

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回