高级检索

钢-泡沫铝-纤维复合结构抗冲击性能数值分析

王潇羽, 贺广零, 李趾扬, 王邦国, 谢晓峰

王潇羽, 贺广零, 李趾扬, 王邦国, 谢晓峰. 钢-泡沫铝-纤维复合结构抗冲击性能数值分析[J]. 南方能源建设, 2017, 4(1): 113-118,142. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.022
引用本文: 王潇羽, 贺广零, 李趾扬, 王邦国, 谢晓峰. 钢-泡沫铝-纤维复合结构抗冲击性能数值分析[J]. 南方能源建设, 2017, 4(1): 113-118,142. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.022
Xiaoyu WANG, Guangling HE, Zhiyang LI, Bangguo WANG, Xiaofeng XIE. Numerical Analysis on Impact Properties of Steel-aluminum Foam-fiber Composite Structure[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(1): 113-118,142. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.022
Citation: Xiaoyu WANG, Guangling HE, Zhiyang LI, Bangguo WANG, Xiaofeng XIE. Numerical Analysis on Impact Properties of Steel-aluminum Foam-fiber Composite Structure[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(1): 113-118,142. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.022
王潇羽, 贺广零, 李趾扬, 王邦国, 谢晓峰. 钢-泡沫铝-纤维复合结构抗冲击性能数值分析[J]. 南方能源建设, 2017, 4(1): 113-118,142. CSTR: 32391.14.j.gedi.issn2095-8676.2017.01.022
引用本文: 王潇羽, 贺广零, 李趾扬, 王邦国, 谢晓峰. 钢-泡沫铝-纤维复合结构抗冲击性能数值分析[J]. 南方能源建设, 2017, 4(1): 113-118,142. CSTR: 32391.14.j.gedi.issn2095-8676.2017.01.022
Xiaoyu WANG, Guangling HE, Zhiyang LI, Bangguo WANG, Xiaofeng XIE. Numerical Analysis on Impact Properties of Steel-aluminum Foam-fiber Composite Structure[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(1): 113-118,142. CSTR: 32391.14.j.gedi.issn2095-8676.2017.01.022
Citation: Xiaoyu WANG, Guangling HE, Zhiyang LI, Bangguo WANG, Xiaofeng XIE. Numerical Analysis on Impact Properties of Steel-aluminum Foam-fiber Composite Structure[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(1): 113-118,142. CSTR: 32391.14.j.gedi.issn2095-8676.2017.01.022

钢-泡沫铝-纤维复合结构抗冲击性能数值分析

详细信息
    作者简介:

    王潇羽(1991),男,山西大同人,工程师,硕士,主要从事组合结构相关工作(e-mail)wangxiaoyu297090@sina.com

  • 中图分类号: V229.7

Numerical Analysis on Impact Properties of Steel-aluminum Foam-fiber Composite StructureEn

  • 摘要: 采用数值模拟的方法研究了冲击荷载作用下钢-泡沫铝-纤维复合结构(以下简称复合结构)的动力响应特性,并着重考察了面板厚度和芯层厚度对复合结构抗冲击性能的影响,寻找其规律,比较分析同质量复合结构中前置钢板与泡沫铝材料质量比重对其冲击性能的影响,寻找前置钢板与泡沫铝最优质量比,并对这种复合结构进行优化设计,为工程实际提供数据依据。结果表明,一定质量范围内,增加钢板厚度对复合结构抗冲击性能的提升要优于同质量泡沫铝,但钢板与泡沫铝存在一个质量最优比,在平面尺寸9.2 m×9.2 m、120 t级的复合结构(PE纤维和后置钢板定量)中这个最优比在0.97:1附近。相同平面尺寸150 t级的复合结构,最优比在0.75:1~0.83:1之间,考虑工艺要求和造价,选择前置钢板9.5 cm、泡沫铝54 cm时综合性能更好,可以抵抗300 m/s初始速度弹体,具有一定安全储备,其重量只有钢筋混凝土结构的1/5.67,体积只有钢筋混凝土结构的17%且抗冲击性能较其更优越。
    Abstract: The method of numerical simulation was used to study the dynamic response characteristics of steel-aluminum foam-fiber composite structure under the action of impact load. The influence of different panel thickness and core layer thickness on the impact resistance of the composite structure was investigated emphatically to find the rule. Compared the influnce with diferent ratio of aluminum foam sandwich plate and front plate in composite structure, optimal mass ratio was marked to optimize the design. In this case, it can provide data basis for engineering practice. It is indicated that: (1) Within the scope of a certain quality, the composite structure with increasing steel plate perform better than aluminum foam in impact resistance. However, there was a optimal quality ratio between steel plates and aluminum foam. The optimal quality ratio was about 0.97: 1 with 120 tons composite structure with sice of 9.2 m×9.2 m; (2) The optimal quality ratio was about 0.75: 1 ~ 0.83: 1 with 150 tons composite structure. As the front steel plate is 9.5 cm and aluminum foam is 54 cm, the combination property was achieved to resist 300 m/s velocity projectile considered technological requirements and cost. In this way, its weight is only 1/5.67 and volume is only 17% of the reinforced concrete structure under a certain safety reserve, and it can perform better in impact resistance.
  • 郑文棠
  • 图  1   复合结构有限元模型与计算模型

    Figure  1.   Finite element model and the calculation model

    图  2   泡沫铝材料应力应变曲线

    Figure  2.   The curve between stress and strain of aluminum foam

    图  3   复合结构受冲击荷载作用下破坏过程

    Figure  3.   Destructive of composite structure under impact load

    图  4   不泡沫芯层厚度下复合结构吸能对比

    Figure  4.   Energy comparison of structures with different thicknesses aluminum foams

    图  5   不同前置钢板厚度下复合结构各层材料吸能情况

    Figure  5.   Energy of structures in each layers with different thicknesses front plates

    图  6   同质量复合结构吸能对比

    Figure  6.   Energy absorption comparison of three structures with same quality

    图  7   五种结构能量吸收对比

    Figure  7.   Energy absorption comparison of five kinds of structures

    表  1   复合结构尺寸及工况设置

    Table  1   Size and operating conditions of composite structure

    编号 前面钢板/cm 泡沫铝/cm PE纤维/cm 后置钢板/cm 弹体初始速度/(m·s-1)
    S2F5 2.0 50.0 2.0 0.5 200
    233
    266
    300
    S2F6 2.0 60.0 2.0 0.5
    S2F7 2.0 70.0 2.0 0.5
    S4F5 4.22 50.0 2.0 0.5
    S6F5 6.44 50.0 2.0 0.5
    S4F6 4.22 60.0 2.0 0.5
    S8F4 8.66 40.0 2.0 0.5
    S10F3 10.88 30.0 2.0 0.5

    注:S-钢;F-泡沫铝;S2F5表示前置钢板2 cm、泡沫铝50 cm、纤维2 cm、后置钢板0.5 cm的钢-泡沫铝-纤维复合结构。

    下载: 导出CSV

    表  2   PE纤维材料参数表

    Table  2   PE fiber material parameter

    参数 Gab/GPa Sxc/GPa Sxt/GPa Syc/GPa Syt/GPa Ssc/GPa
    纤维 40 350 420 150 30 30
    下载: 导出CSV

    表  3   半穿甲炸弹侵彻能力

    Table  3   Bombs penetration ability

    弹速/(m·s-1) 100 200 300 400 500
    钻土深度/m 14.9 36.4 57.9 79.4 100.9
    钻钢筋混凝土深度/m 0.9 2.3 4.1 6.3 8.7
    下载: 导出CSV

    表  4   各结构尺寸数据表

    Table  4   The data tble of structure size

    编号 前面钢板/cm 泡沫铝/cm PE纤维/cm 后置钢板/cm
    S2F8 2.00 88.0 2.0 0.5
    S4F7 4.22 78.0 2.0 0.5
    S6F6 6.44 68.0 2.0 0.5
    S8F5 8.66 58.0 2.0 0.5
    S10F4 10.88 48.0 2.0 0.5
    下载: 导出CSV
  • [1] 廖祖伟. 钢板-支撑钢筋-聚氨酯复合材料结构的性能及其在地下防护工程中的应用研究 [D]. 四川:西南交通大学,2007.

    LIAO Z W. Study on performance of steel /supported reinforcing bar /polyurethane composite structures and research on the application of underground protective work [D]. Sichuan Province:Southwest Jiaotong University,2007.

    [2] 杨飞,王志华,赵隆茂. 泡沫铝夹芯板抗侵彻性能的数值研究 [J]. 科学技术与工程,2011,11(15):3378-3382.

    YANG F,WANG Z H,ZHAO L M. Numerical studies on aluminum the penetration resistance of foam sandwich board [J]. Science Technology and Engineering,2011,11(15):3378-3382.

    [3]

    VILLANUEVA G R,CANTWELL W J. The high velocity impact response of composite and FML-reinforced sandwich structures [J]. Composites Science and Technology,2004,64(1):35-54.

    [4]

    VAIDYA U K,NELSON S,SINN B,et a1. Processing and high strain impact response of multifunctional sandwich composites [J]. Composite Structures,2001,52(3):429-440.

    [5] 张明华,赵恒义,谌河水. 泡沫铝夹芯板动态抗侵彻性能的实验研究 [J]. 力学季刊,2008,29(2):241-247.

    ZHANG M H,ZHAO H Y,ZHAN H S. Experimental research on anti-penetration properties of sandwich plate with aluminum foam core [J]. Chinese Quarterly of Mechanics,2008,29(2):241-247.

    [6]

    HOO FATT M S,PARK K S. Perforation of honeycomb sandwich plates by projectiles [J]. Composites:Part A,2000,31(8):889-899.

    [7]

    HANSEEN AG,GIRARD Y,OLOVSSON L,et al. A numerical model for bird strike of aluminium foam-based sandwich panels [J]. International Journal of Impact Engineering,2006,32(7):1127-1144.

    [8]

    MEO M,VIGNJEVIC R,MARENGO G. The response of honeycomb sandwich panels under low-velocity impact loading [J]. International Journal of Mechanical Sciences,2005,47(9):1301-1325.

    [9]

    GURUPRASAD S,MHKHERJEE A. Layered sacrificial claddings under blast loading,Part I: analytical studies [J]. International Journal of Impact Engineerin,2000,24(9):957-973.

  • 期刊类型引用(0)

    其他类型引用(1)

图(7)  /  表(4)
计量
  • 文章访问数:  565
  • HTML全文浏览量:  154
  • PDF下载量:  25
  • 被引次数: 1
出版历程
  • 收稿日期:  2016-09-21
  • 刊出日期:  2020-07-17

目录

    Xiaofeng XIE

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回