高级检索

400 MW海上升压站电气主接线方案探讨

和庆冬, 朱瑞军, 梅春

和庆冬, 朱瑞军, 梅春. 400 MW海上升压站电气主接线方案探讨[J]. 南方能源建设, 2019, 6(4): 80-85. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.013
引用本文: 和庆冬, 朱瑞军, 梅春. 400 MW海上升压站电气主接线方案探讨[J]. 南方能源建设, 2019, 6(4): 80-85. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.013
HE Qingdong, ZHU Ruijun, MEI Chun. Discussions on the Main Electrical Wiring Scheme for a 400 MW Offshore Substation Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 80-85. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.013
Citation: HE Qingdong, ZHU Ruijun, MEI Chun. Discussions on the Main Electrical Wiring Scheme for a 400 MW Offshore Substation Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 80-85. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.013
和庆冬, 朱瑞军, 梅春. 400 MW海上升压站电气主接线方案探讨[J]. 南方能源建设, 2019, 6(4): 80-85. CSTR: 32391.14.j.gedi.issn2095-8676.2019.04.013
引用本文: 和庆冬, 朱瑞军, 梅春. 400 MW海上升压站电气主接线方案探讨[J]. 南方能源建设, 2019, 6(4): 80-85. CSTR: 32391.14.j.gedi.issn2095-8676.2019.04.013
HE Qingdong, ZHU Ruijun, MEI Chun. Discussions on the Main Electrical Wiring Scheme for a 400 MW Offshore Substation Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 80-85. CSTR: 32391.14.j.gedi.issn2095-8676.2019.04.013
Citation: HE Qingdong, ZHU Ruijun, MEI Chun. Discussions on the Main Electrical Wiring Scheme for a 400 MW Offshore Substation Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 80-85. CSTR: 32391.14.j.gedi.issn2095-8676.2019.04.013

400 MW海上升压站电气主接线方案探讨

基金项目: 

国家电投集团江苏海上风力发电有限公司科技项目“海上风电专项技术研究” SPICJS015HF

详细信息
    作者简介:

    和庆冬(通信作者) 1973-,男,河南焦作人,国家电投集团江苏海上风力发电有限公司工程部主任,高级工程师,国家一级建造师,国家注册安全工程师,主要从事火电、海上风力发电工程技术管理工作(e-mail)he2006126 @126.com。

    朱瑞军 1968-,男,江苏南通人,国家电投集团江苏海上风力发电有限公司副总经理,学士,主要从事新能源发电项目工程建设、发电运营管理工作(e-mail)572486754@qq.com。

  • 中图分类号: TK89; TM614

Discussions on the Main Electrical Wiring Scheme for a 400 MW Offshore Substation StationEn

  • 摘要:
      [目的]  海上风电场面临着离岸距离远、检修组织船舶机械成本高、检修周期长,日常维护受气候海况影响大等特点,合理选择电气主接线方案对风电场长周期安全稳定运行、合理安排检修时间、保证经济效益具有重要意义。
      [方法]  主要对海上升压站送出海缆、主变、高中压侧电气主接线、重要电气设备联接的设计方案进行比较选择,通过短路电流计算、振动建模分析、运行工况分析等方法进行了不同方案的比较和探讨。
      [结果]  根据分析比对,提出了海上升压站选用双分裂主变、线变组布置、主变低压侧电缆连接的电气主接线方案。
      [结论]  希望对今后海上升压站的电气主接线设计提供借鉴。
    Abstract:
      [Introduction]  Offshore wind farms are characterized by long distance from shore, high costs of repair due to vessels involved and weather, long maintenance cycles and the fact that daily operations and maintenance is highly dependent on weather and sea state. It is then of vital importance to select a reliable main electrical wiring for reliable operations of offshore wind farms, optimal planning of maintenance and secure finance returns.
      [Method]  Various design schemes for subsea cables, main transformers, electrical wiring on the high/medium voltage side and major electrical components on the offshore substation have been compared and assessed in this paper through calculating short-circuit currents, modeling and analyzing vibration and various operating scenarios.
      [Result]  Based on the comparisons and assessments, the main electrical wiring scheme is recommended to use three-winding main transformers, circuit-transformer unit arrangement and cable connection on the low voltage side of transformer for main electrical wiring scheme.
      [Conclusion]  The design for main electrical wiring scheme for a 400 MW offshore substation is proposed in this paper.
  • 图  1   不同风速区间中的小时数

    Figure  1.   Hours between different wind speed

    图  2   某型号4 MW风机功率曲线图

    Figure  2.   Power curve of a certain type of 4 MW fan

    图  3   双分裂变压器短路电流计算模型图

    Figure  3.   Double split transformer computing model graph

    图  4   双绕组变压器短路电流计算模型图

    Figure  4.   double winding transformer computing model graph

    图  5   高压侧接线方式

    Figure  5.   High-voltage side connection mode

    图  6   双分裂变压器下的两组单母线分段接线

    Figure  6.   Two groups of single bus wiring under double split transforme

    图  7   双分裂变压器下的四组单母线接线

    Figure  7.   Four groups of single bus wiring under double split transformer

    图  8   主变低压侧电缆连接方式

    Figure  8.   Main transformer low-voltage side cable connection mode

    图  9   主变低压侧管型母线连接方式

    Figure  9.   Main transformer low-voltage side tubular bus connection mode

    图  10   升压站某时段的振动加速度峰值变化时程图

    Figure  10.   Vibration acceleration peak change diagram of booster station during some periods of time

    表  1   图2各点网速功率值

    Table  1   Value of wind and power at each point in Figure 2

    Wind/(m·s-1) Power/kW
    0 0
    1 0
    2 0
    3 0
    4 189
    5 427
    6 773
    7 1 255
    8 1 890
    9 2 701
    10 3 496
    11 3 893
    12 3 989
    13 3 999
    14 4 000
    15 4 000
    16 4 000
    17 4 000
    18 4 000
    19 4 000
    20 4 000
    21 4 000
    22 4 000
    23 4 000
    24 4 000
    25 4 000
    下载: 导出CSV

    表  2   短路电流计算结果表

    Table  2   Short circuit current calculation table kA

    短路点位置 双分裂变压器短路电流值 双绕组变压器短路电流值
    陆上220 kV母线 15.97 16.1
    海上220 kV母线 13.45 13.8
    海上35 kV母线 16.37 27.12
    风机侧35 kV母线 14.8 23.3
    风机侧690 V母线 59.6 61.4
    下载: 导出CSV

    表  3   振动强度统计表

    Table  3   Vibration intensity chart

    日期 最大加速度/(m·s-2) 加速度60 s最大均方根/(m·s-2) 日期 最大加速度/(m·s-2) 加速度60 s最大均方根/(m·s-2)
    2016 09 0.366 0.020 0 2017 06 0.632 0.043 6
    2016 10 0.513 0.023 0 2017 07 0.458 0.025 0
    2016 11 3.515 0.355 0 2017 08 4.457 0.307 0
    2016 12 0.326 0.018 4 2017 09 0.673 0.034 2
    2017 01 0.405 0.025 0 2017 10 0.543 0.036 4
    2017 02 0.537 0.036 0 2017 11 0.596 0.034 0
    2017 03 10.034 0.792 0 2017 12 0.653 0.038 0
    2017 04 14.897 0.635 0 2018 01 0.558 0.032 0
    2017 05 0.5490 0.033 1 2018 02 0.428 0.024 0
    下载: 导出CSV
  • [1] 张丹,王杰. 国内微电网项目建设及发展趋势研究 [J]. 电网技术,2016,40(2):451-458.

    ZHANG D,WANG J. Research on construction and development trend of micro-grid in China [J]. Power System Technology,2016,40(2):451-458.

    [2] 汤东升. 海上风电大数据分析技术及应用前景初探 [J]. 南方能源建设,2018,5(2):65-66.

    TANG D S. Preliminary study on the big data technology and its application prospect for offshore wind farm [J]. Southern Energy Construction,2018,5(2):65-66.

    [3] 元国凯,汤东升,刘晋超,等. 海上风电机组基础灌浆技术应用与发展 [J]. 南方能源建设,2017,4(1):10-17.

    YUAN G K,TANG D S,LIU J C,et al. Grouting technology application and development in offshore wind farm [J]. Southern Energy Construction,2017,4(1):10-17.

    [4] 苗文静,黄伟,葛良军,等. 基于VSC-HVDC并网的海上风电场无功补偿控制策略 [J]. 华北电力大学学报(自然科学版),2019,46(1):74-81.

    MIAO W J,HUANG W,GE L J,et al. Reactive power compensation control strategy of offshore wind farm on basis of VSC-HVDC grid-connection [J]. Journal of North China Electric Power University(Natural Science Edition),2019,46(1):74-81.

    [5]

    KOCEWIAK  H,KRAMER B L Ø,HOLMSTRØM O,et al. Resonance damping in array cable systems by wind turbine active filtering in large offshore wind power plants [J]. IET Renewable Power Generation,2017(7):1069-1077.

    [6]

    LIN J. Integrating the first HVDC-Based offshore wind power into PJM system—a real project case study [J]. IEEE Transactions on Industry Applications,2016,52(3):1970-1978.

    [7] 迟永宁,梁伟,张占奎,等. 大规模海上风电输电与并网关键技术研究综述 [J]. 中国电机工程学报,2016,36(14):3758-3771.

    CHI Y N,LIANG W,ZHANG Z K,et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power [J]. Proceedings of the CSEE,2016,36(14):3758-3771.

    [8] 郭伟,程莲莲. 海上升压站上部组块施工期监测与分析 [J]. 水力发电,2017,43(10):103-106.

    GUO W,CHENG L L. Upper block construction monitoring and analysis of offshore booster station [J]. Water Power,2017,43(10):103-106.

    [9] 刘福来,张略秋,武江. 海上风电场海上升压站抗震设计 [J]. 武汉大学学报(工学版),2013,46(增刊1):144-147.

    LIU F L,ZHANG L Q,WU J. Seismic design of offshore substation for offshore wind power farms [J]. Engineering Journal of Wuhan University,2013,46(Supp.1):144-147.

    [10] 杨建军,俞华锋,赵生校,等. 海上风电场升压变电站设计基本要求的研究 [J]. 中国电机工程学报,2016,36(14):3781-3789.

    YANG J J,YU H F,ZHAO S X,et al. Research on basic requirements of offshore substation design [J]. Proceedings of the CSEE,2016,36(14):3781-3789.

    [11] 陈敏,佘双翔,刘小松,等. 基于LCC的海上风电场主变压器冗余配置经济性对比与分析 [J]. 电力系统自动化,2015,39(14):168-174.

    CHEN M,SHE S X,LIU X S,et al. Economical assessment on redundancy configuration of main transformers for offshore wind farm based on life cycle cost [J]. Automation of Electric Power Systems,2015,39(14):168-174.

    [12] 张宝峰. 国内外风电场海上升压站布置型式标准概述 [J]. 中国标准化,2017(24):222-223.

    ZHANG B F. Overview of layout standards for offshore booster stations of wind farms both here and abroad [J]. China Standardization,2017(24):222-223.

图(10)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-06
  • 修回日期:  2019-03-29
  • 刊出日期:  2020-07-10

目录

    MEI Chun

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回