高级检索

超导磁体技术与磁约束核聚变

王腾

王腾. 超导磁体技术与磁约束核聚变[J]. 南方能源建设, 2022, 9(4): 108-117. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.014
引用本文: 王腾. 超导磁体技术与磁约束核聚变[J]. 南方能源建设, 2022, 9(4): 108-117. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.014
WANG Teng. Superconducting Magnet Technology and Magnetically Confined Fusion[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(4): 108-117. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.014
Citation: WANG Teng. Superconducting Magnet Technology and Magnetically Confined Fusion[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(4): 108-117. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.014
王腾. 超导磁体技术与磁约束核聚变[J]. 南方能源建设, 2022, 9(4): 108-117. CSTR: 32391.14.j.gedi.issn2095-8676.2022.04.014
引用本文: 王腾. 超导磁体技术与磁约束核聚变[J]. 南方能源建设, 2022, 9(4): 108-117. CSTR: 32391.14.j.gedi.issn2095-8676.2022.04.014
WANG Teng. Superconducting Magnet Technology and Magnetically Confined Fusion[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(4): 108-117. CSTR: 32391.14.j.gedi.issn2095-8676.2022.04.014
Citation: WANG Teng. Superconducting Magnet Technology and Magnetically Confined Fusion[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(4): 108-117. CSTR: 32391.14.j.gedi.issn2095-8676.2022.04.014

超导磁体技术与磁约束核聚变

基金项目: 国家自然科学基金资助项目“EAST全超导托卡马克中等离子体对失超探测信号的干扰机理及抑制策略研究”(12105321);安徽省自然科学基金资助项目“超导聚变装置中等离子体电流对失超探测扰动分析与补偿研究”(2108085QA37)
详细信息
    作者简介:

    王腾,1992-,男,江苏徐州人,副研究员,研究方向为磁约束核聚变装置大型超导磁体失超检测技术(e-mail)twang@ipp.ac.cn

    通讯作者:

    王腾,(e-mail)twang@ipp.ac.cn

  • 中图分类号: TL4;TL6

Superconducting Magnet Technology and Magnetically Confined FusionEn

  • 摘要:
      目的  磁约束核聚变是解决能源问题的有效途径之一。为了实现准稳态运行,超导磁体(特别是高场高温超导磁体)已成为未来托卡马克设计的首选方案。
      方法  介绍了EAST的最新实验进展及未来研究计划,并从超导磁体技术方面总结了未来聚变装置CFETR的最新进展。
      结果  2021年底,世界首个全超导托卡马克EAST(Experimental Advanced Superconducting Tokamak)成功实现1056 s长脉冲高参数等离子体运行,创造最长运行时间的世界记录。
      结论  中国聚变工程试验堆(CFETR, China Fusion Engineering Test Reactor)的设计已经完成,它将填补国际热核聚变实验堆(ITER, International Thermonuclear Experimental Reactor)和示范堆(DEMO)间的空白。
    Abstract:
      Introduction  Magnetically confined fusion is an effective way to solve the energy problem. To direct to quasi-steady state discharges and their relevant physics, the superconducting magnet (especially the high field HTS magnet) had become the first choice for tokamak design in the future.
      Method  This reserch was devoted to introduce the recent experimental progress and future research schemes of EAST, and summarized the latest progress of CFETR, especially the research on superconducting magnet.
      Result  EAST device, the world's first full superconducting tokamak, has achieved a new pulse length world record (1056 seconds) for high temperature tokamak plasma by the end of 2021.
      Conclusion  The designs of CFETR, which aim to bridge the gaps between the fusion experiment ITER and the demonstration reactor (DEMO), have been carried out within CFETR National design team.
  • 图  1   获得核聚变反应的三要素

    Figure  1.   Three key parameters for nuclear fusion

    图  2   聚变约束的三种途径

    Figure  2.   Three schemes of fusion confinement

    图  3   托卡马克约束磁场示意图

    Figure  3.   Magnetic field distribution in tokamak

    图  4   托卡马克基本结构

    Figure  4.   Typical composition of tokamak

    图  5   HT-7装置主机

    Figure  5.   HT-7 tokamak device

    图  6   HT-7实现长达400 s的等离子体放电

    Figure  6.   400 seconds long pulse plasma achieved in HT-7 tokamak

    图  7   EAST装置

    Figure  7.   EAST tokamak device

    图  8   EAST超导磁体系统

    Figure  8.   Superconducting magnet system of EAST

    图  9   EAST 代表性实验结果

    Figure  9.   Main achievements and progresses of EAST

    图  10   中国聚变能发展路线图

    Figure  10.   Roadmap of China magnetically confined fusion development

    图  11   CFETR超导磁体系统

    Figure  11.   Overview of CFETR magnet system

    图  12   CRAFT超导磁体测试平台

    Figure  12.   Magnet test facility of CRAFT

  • [1]

    LAWSON J D. Some criteria for a power producing thermonuclear reactor [J]. Proceedings of the Physical Society Section B, 1957, 70(1): 6-10. DOI: 10.1088/0370-1301/70/1/303.

    [2] 万宝年. 人造太阳——EAST全超导托卡马克核聚变实验装置 [M]. 杭州: 浙江教育出版社, 2017.

    WAN B N. Man-made sun: EAST fully superconducting tokamak fusion test device [M]. Hangzhou: Zhejiang Education Publishing, 2017.

    [3]

    WESSON J. Tokamaks (4th ed.) [M]. New York: Oxford University Press, 2011.

    [4]

    LUCE T C, HUMPHREYS D A, JACKSON G L, et al. Inductive flux usage and its optimization in tokamak operation [J]. Nuclear Fusion, 2014, 54(9): 093005. DOI: 10.1088/0029-5515/54/9/093005.

    [5]

    GAO X, ZHAO Y P, GONG X Z, et al. Progress of LHCD and IBW heating experiments on HT-7 tokamak [J]. Plasma Science and Technology, 2009, 11(4): 381-384. DOI: 10.1088/1009-0630/11/4/02.

    [6]

    LI J G, TEAM W Y. The experimental advanced superconducting tokamak [J]. Engineering, 2021, 7(11): 1523-1528. DOI: 10.1016/j.eng.2021.10.004.

    [7]

    WEI J, CHEN W G, WU W Y, et al. The superconducting magnets for east tokamak [J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 556-559. DOI: 10.1109/Tasc.2010.2040030.

    [8]

    ZUO G Z, HU J S, ZHEN S, et al. Comparison of various wall conditionings on the reduction of H content and particle recycling in EAST [J]. Plasma Physics and Controlled Fusion, 2012, 54(1): 015014. DOI: 10.1088/0741-3335/54/1/015014.

    [9]

    WAN B N, LIANG Y, GONG X Z, et al. Recent advances in east physics experiments in support of steady-state operation for ITER and CFETR [J]. Nuclear Fusion, 2019, 59(11): 112003. DOI: 10.1088/1741-4326/ab0396.

    [10] EAST团队. EAST装置物理实验创造1.2亿度101秒等离子体运行的世界纪录 [EB/OL]. (2021-05-28)[2022-05-26] http://www.ipp.cas.cn/xwdt/ttxw/202105/t20210528_641312.html.

    Team EAST. EAST hit new mark in quest for fusion reactor [EB/OL]. (2021-05-28) [2022-05-26] http://english.ipp.cas.cn/news/202106/t20210604_271631.html.

    [11] 叶华龙. EAST装置实现1056秒的长脉冲高参数等离子体运行 [EB/OL]. (2021-12-31) [2022-05-26] http://www.ipp.cas.cn/xwdt/ttxw/202112/t20211231_677226.html.

    YE H L. 1056 seconds, another world record for EAST [EB/OL]. (2021-12-31) [2022-05-26] http://english.ipp.cas.cn/news/202112/t20211231_295486.html.

    [12] 王腾. 磁约束核聚变装置CS磁体失超检测系统设计及关键技术研究[D]. 合肥: 中国科学技术大学, 2019.

    WANG T. Design and key technologies study of quench detection system for CS magnet in the magnetic confinement fusion [D]. Hefei: University of Science and Technology of China, 2019.

    [13]

    WAN Y X, LI J G, LIU Y, et al. Overview of the present progress and activities on the CFETR [J]. Nuclear Fusion, 2017, 57(10): 102009. DOI: 10.1088/1741-4326/aa686a.

    [14]

    ZHENG J X, SONG Y T, LIU X F, et al. Overview of the design status of the superconducting magnet system of the CFETR [J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 4204305. DOI: 10.1109/tasc.2018.2797965.

    [15]

    ZHENG J X, LIU X F, SONG Y T, et al. Electromagnetic design and challenges for 14 T high-TC toroidal field superconducting magnet for CFETR [J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 4600104. DOI: 10.1109/tasc.2018.2883130.

    [16]

    XU A H, LIU J, ANVAR V A, et al. Preliminarily static analysis of cfetr central solenoid magnet system [J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 4202505. DOI: 10.1109/tasc.2020.2970333.

    [17]

    WU Y, LI J G, SHEN G, et al. Preliminary design of CFETR TF prototype coil [J]. Journal of Fusion Energy, 2021, 40(1): 5. DOI: 10.1007/s10894-021-00291-8.

    [18]

    WU F, LIU X G, WANG Z L, et al. Seismic analysis of the CFETR CS model coil [J]. Fusion Engineering and Design, 2020, 159: 111968.1-111968.7. DOI: 10.1016/j.fusengdes.2020.111968.

图(12)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 修回日期:  2022-06-13
  • 网络出版日期:  2022-12-22
  • 刊出日期:  2022-12-22

目录

    Corresponding author: WANG Teng, twang@ipp.ac.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回