高级检索

输电塔高低腿逆向配置方法研究

许顺德

许顺德.输电塔高低腿逆向配置方法研究[J].南方能源建设,2022,09(增刊1):125-131.. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.019
引用本文: 许顺德.输电塔高低腿逆向配置方法研究[J].南方能源建设,2022,09(增刊1):125-131.. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.019
XU Shunde.Research on High-Low Leg Reverse Configuration Method of Transmission Tower[J].Southern Energy Construction,2022,09(增刊1):125-131.. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.019
Citation: XU Shunde.Research on High-Low Leg Reverse Configuration Method of Transmission Tower[J].Southern Energy Construction,2022,09(增刊1):125-131.. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.019
许顺德.输电塔高低腿逆向配置方法研究[J].南方能源建设,2022,09(增刊1):125-131.. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S1.019
引用本文: 许顺德.输电塔高低腿逆向配置方法研究[J].南方能源建设,2022,09(增刊1):125-131.. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S1.019
XU Shunde.Research on High-Low Leg Reverse Configuration Method of Transmission Tower[J].Southern Energy Construction,2022,09(增刊1):125-131.. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S1.019
Citation: XU Shunde.Research on High-Low Leg Reverse Configuration Method of Transmission Tower[J].Southern Energy Construction,2022,09(增刊1):125-131.. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S1.019

输电塔高低腿逆向配置方法研究

基金项目: 

广东天联电力设计有限公司科技项目“输电线路铁塔高低腿配置技术研究” GDTL2021005

详细信息
    作者简介:

    许顺德1988-,男,广东梅州人,高级工程师,硕士,主要从事高压输电线路设计研究工作。 E-mail: gd_xsd@126. com

  • 中图分类号: TM7

Research on High-Low Leg Reverse Configuration Method of Transmission TowerEn

  • 摘要:
      目的  铁塔基础配置结果直接影响基础方案的准确合理性,需要解决铁塔高低腿人工配置速度慢、精度低的问题。
      方法  通过常规配置过程分析,及配置结果对比分析,提出人工配置过程中的问题。人工配置时精度较低,特别对于地形较陡或大坡比铁塔的情况人工配置结果可能影响基础安全或基础设计基面偏于保守。通过常规人工配置过程问题分析,提出逆向配置方法并研发三维配置程序。
      结果  采用逆向配置法配置同一基塔,结果表明逆向配置法结果精确,可快速准确计算各参数同时准确计算实际基础露高。
      结论  逆向配置方法精度及效率远优于人工方法配置,配置结果直观准确,推荐工程中采用此法配置铁塔高低腿。
    Abstract:
      Introduction  The result of tower foundation configuration directly affects the accuracy and rationality of the foundation scheme. The problem of slow manual configuration speed and low accuracy of tower height-low leg need to be solved.
      Method  This paper analyzed the configuration process and configuration result,and then this paper put forward the problems in the manual configuration process. The accuracy of manual configuration was low, especially for towers with steep terrain or large slope ratio. The manual configuration results may affected the safety of foundation or caused the foundation design parmeters to be conservative. Through the problem analysis of the conventional configuration process, a reverse configuration method and a 3D configuration program were put forward in this paper.
      Result  The reverse configuration method is used to configure the same tower, and the result of the reverse configuration method is accurate, which can quickly and accurately calculate the various parameters and accurately calculate the actual exposed height.
      Conclusion  The accuracy and efficiency of reverse configuration method are better than that of manual configuration, and the configuration results are intuitive and accurate. It is recommended to use the method to configure the high-low leg in engineering.
  • 图  1   高低腿配置示意图

    Figure  1.   High-low leg configuration

    图  2   初定塔腿位置

    Figure  2.   Initial tower leg position

    图  3   实际塔腿位置

    Figure  3.   Actual tower leg position

    图  4   配置流程图

    Figure  4.   Configuration flow chart

    图  5   配置示意图

    Figure  5.   Configuration schematic diagram

    图  6   三维配置图

    Figure  6.   3D configuration map

    表  1   配置结果

    Table  1   Configuration result

    腿号基面/m主柱加高/m桩顶高/m接腿
    1.52.03.533-7
    -1.53.01.533-5
    -9.05.5-3.533
    -7.54.0-3.533

    注:(1)最短腿为30-7 m,Ⅰ腿降基约1.0 m;(2)Ⅰ腿为前进方向右上角腿,顺时针旋转依次为Ⅱ~Ⅳ腿。

    下载: 导出CSV

    表  2   塔腿位置变化

    Table  2   Change of tower leg location

    腿号配置半根开/m实际半根开/m塔腿位置变化幅度/m
    5.5805.020-0.792
    5.5805.300-0.396
    5.5806.0000.594
    5.5806.0000.594
    下载: 导出CSV

    表  3   配置结果

    Table  3   Configuration result

    腿号基面/m主柱加高/m桩顶高/m接腿
    1.02.53.533-7
    -1.53.01.533-5
    -9.56.0-3.533
    -8.04.5-3.533
    下载: 导出CSV

    表  4   配置结果

    Table  4   Configuration result

    腿号基面/m主柱加高/m桩顶高/m接腿实际露高/m
    1.02.53.533-7-0.55
    -1.53.01.533-5-0.15
    -9.56.0-3.5332.97
    -8.04.5-3.5331.12
    下载: 导出CSV

    表  5   配置效率对比

    Table  5   Fig.5 Comparison of configuration efficiency

    塔数量(基)总耗时(平均耗时)/s人工/逆向配置
    程序逆向配置人工配置
    A工程80基473(5.91)32 800(410)69.37
    B工程65基377(5.97)26 575(395)66.16
    C工程63基364(5.59)26 019(413)73.88
    下载: 导出CSV
  • [1] 鲁先龙, 程永锋. 斜坡地形输电线路基础和杆塔的配合技术 [J].电力建设, 2011, 32(8): 29-33.DOI: 10.3969/j.issn.1000-7229.2011.08.006.

    LUX L, CHENGJ F.Study on technology of foundation to match tower structure of transmission line on sloping ground [J].Electric Power Construction, 2011, 32(8): 29-33.DOI: 10.3969/j.issn.1000-7229.2011.08.006.

    [2] 国家能源局.架空输电线路基础设计技术规程: DL/T 5219—2014 [S].北京: 中国电力出版社, 2014.

    National Energy Administration.Technical code for design of foundation of overhead transmission line: DL/T 5219—2014 [S].Beijing: China Electric Power Press, 2014.

    [3] 中国电力工程顾问集团有限公司, 中国能源建设集团规划设计有限公司.电力工程设计手册 [M].北京: 中国电力出版社, 2019.

    China Power Engineering Consuliing Group Co., Ltd., China Energy Engineering Group Planning & Enginering Co., Ltd.Power Engineering Design Manual [M].Beijing: China Electric Power Press, 2019.

    [4] 侯晓燕, 崔强, 鲁先龙, 等.输电线路高低腿杆塔基础配置策略及软件研发 [J].地下空间与工程学报, 2014, 10(增刊2): 1917-1921.

    HOUX Y, CUIQ, LUX L, et al.Configuration strategy and software development of high-low leg tower foundation for transmission line [J].Chinese Journal of Underground Space and Engineering, 2014, 10(Supp.2): 1917-1921.

    [5] 秦庆芝, 于泓, 张益国, 等.输电线路不等高基础设计及试验研究 [J].电力建设, 2008, 29(12): 26-30.DOI: 10.3969/j.issn.1000-7229.2008.12.007.

    QINQ Z, YUH, ZHANGY G, et al.Design and experiment studies of transmission line uneven height foundations [J].Electric Power Construction, 2008, 29(12): 26-30.DOI: 10.3969/j.issn.1000-7229.2008.12.007.

    [6] 黎景辉.多扩头挖孔桩基础在输电线路中的应用 [J].南方能源建设, 2020, 7(增刊2): 45-49.DOI: 10.16516/j.gedi.issn2095-8676.2020.S2.007.

    LIJ H.Application of multiple heads pile foundation in transmission line [J].Southern Energy Construction, 2020, 7(Supp.2): 45-49.DOI: 10.16516/j.gedi.issn2095-8676.2020.S2.007.

    [7] 许顺德.桩—岩石锚杆复合基础在架空输电线路中的应用 [J].南方能源建设, 2017, 4(增刊1): 116-119.DOI: 10.16516/j.gedi.issn2095-8676.2017.S1.022.

    XUS D.Application of pile rock anchor composite foundation in transmission line [J].Southern Energy Construction, 2017, 4(Supp.1): 116-119.DOI: 10.16516/j.gedi.issn2095-8676.2017.S1.022.

    [8] 丁士君, 金建华, 鲁先龙.输电线路新型复合式基础的设计与应用 [J].武汉大学学报(工学版), 2011,44(增刊1):210-213.

    DINGS J, JINJ H, LUX L.Design and application of novel composite foundations to transmission lines [J].Engineering Journal of Wuhan Uinversity, 2011,44(Supp.1):210-213.

    [9] 薛乐.输电线路铁塔长短腿与高低基础配置的优化研究 [D].吉林: 吉林建筑大学, 2015.

    XUEL.Study on optimization of transmission tower leg length and height of the base configuration [D].Jilin: Jilin Institute of Architecture and Civil Engineering, 2015.

    [10] 明日科技.Visual Basic从入门到精通 [M].北京: 清华大学出版社, 2017.

    Tomorrow's Science and Technology.From introduction to mastery of Visual Basic [M].Beijing: Tsinghua University Press, 2017.

    [11] 张晋西.Visual Basic与Auto CAD二次开发 [M].北京: 清华大学出版社, 2002.

    ZHANGJ X.Visual Basic and Auto CAD secondary development [M].Beijing: Tsinghua University Press, 2002.

    [12] 张帆, 王成煌, 郑立楷, 等.AutoCAD VBA二次开发教程 [M].北京:清华大学出版社, 2006.

    ZHANGF, WANGC H, ZHENGL K, et al.Secondary development course of AutoCAD VBA [M].Beijing: Tsinghua University Press, 2006.

    [13] 余天生, 赖惠君, 叶伟力, 等.铁塔高低腿配置的计算方法、系统及存储介质: CN 111709115 A [P].2020.

    YUT S, LAIH J, YEW L.High-low leg configuration method system and storage medium of transmission tower: CN 111709115 A [P].2020.

    [14] 程永锋, 鲁先龙, 郑卫锋.斜坡地形输电线路基础设计研究 [J].武汉大学学报(工学版), 2009,42(增刊2):277-280.DOI: CNKI: SUN: WSDD.0.2009-S1-059.

    CHENGY F, LUX L, ZHENGW F.Research on relationship between surface height and buried depth increase of excavated foundation in slope terrain [J].Engineering Journal of Wuhan University, 2009(Supp.2):277-280.

    [15] 祖为国, 杨忠祥.基于ObjectARX的输电线路塔基地形图批量自动绘制 [J].黑龙江工程学院学报(自然科学版), 2014, 28(2): 32-34.DOI: 10.19352/j.cnki.issn1671-4679.2014.02.009.

    ZUW G, YANGZ X.The topographic map of transmission lines drawn automatically based on ObjectARX [J].Journal of Heilongjiang Institute of Technology(Natural Science Edition), 2014, 28(2): 32-34.DOI: 10.19352/j.cnki.issn1671-4679.2014.02.009.

    [16] 何雄.Delaunay三角网点定位算法在输电线路设计中的应用 [J].山东工业技术, 2019(8): 208.DOI: 10.16640/j.cnki.37-1222/t.2019.08.188.

    HEX.Application of delaunay triangular network point location algorithm in transmission line design [J].Journal of Shandong Industrial Technology, 2019(8): 208.DOI: 10.16640/j.cnki.37-1222/t.2019.08.188.

图(6)  /  表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-17
  • 修回日期:  2021-11-06
  • 刊出日期:  2022-05-30

目录

    Shunde XU, gd_xsd@126. com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回