高级检索

过灰堤盾构电力隧道实测沉降规律和机理分析

聂卫平, 陈峰, 曹波

聂卫平, 陈峰, 曹波. 过灰堤盾构电力隧道实测沉降规律和机理分析[J]. 南方能源建设, 2019, 6(2): 84-88. DOI: 10.16516/j.gedi.issn2095-8676.2019.02.015
引用本文: 聂卫平, 陈峰, 曹波. 过灰堤盾构电力隧道实测沉降规律和机理分析[J]. 南方能源建设, 2019, 6(2): 84-88. DOI: 10.16516/j.gedi.issn2095-8676.2019.02.015
Weiping NIE, Feng CHEN, Bo CAO. Measured Settlement Regular and Mechanism Analysis of Shield Cable Tunnel Through Ash Dam[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 84-88. DOI: 10.16516/j.gedi.issn2095-8676.2019.02.015
Citation: Weiping NIE, Feng CHEN, Bo CAO. Measured Settlement Regular and Mechanism Analysis of Shield Cable Tunnel Through Ash Dam[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 84-88. DOI: 10.16516/j.gedi.issn2095-8676.2019.02.015
聂卫平, 陈峰, 曹波. 过灰堤盾构电力隧道实测沉降规律和机理分析[J]. 南方能源建设, 2019, 6(2): 84-88. CSTR: 32391.14.j.gedi.issn2095-8676.2019.02.015
引用本文: 聂卫平, 陈峰, 曹波. 过灰堤盾构电力隧道实测沉降规律和机理分析[J]. 南方能源建设, 2019, 6(2): 84-88. CSTR: 32391.14.j.gedi.issn2095-8676.2019.02.015
Weiping NIE, Feng CHEN, Bo CAO. Measured Settlement Regular and Mechanism Analysis of Shield Cable Tunnel Through Ash Dam[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 84-88. CSTR: 32391.14.j.gedi.issn2095-8676.2019.02.015
Citation: Weiping NIE, Feng CHEN, Bo CAO. Measured Settlement Regular and Mechanism Analysis of Shield Cable Tunnel Through Ash Dam[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 84-88. CSTR: 32391.14.j.gedi.issn2095-8676.2019.02.015

过灰堤盾构电力隧道实测沉降规律和机理分析

基金项目: 

中国能建广东院科技项目“电缆隧道选型施工与地层变形研究” EV00801W

详细信息
    作者简介:

    聂卫平(通信作者) 1982-,男,江西抚州人,高级工程师,岩土工程博士,主要从事架空输电线路、电力电缆隧道和综合管廊等方面的设计和研究工作(e-mail)nieweiping@gedi.com.cn。

  • 中图分类号: TM7; TU45

Measured Settlement Regular and Mechanism Analysis of Shield Cable Tunnel Through Ash DamEn

  • 摘要:
      [目的]  根据灰堤实测沉降数据分析了实测沉降与一般规律的异同点,研究了灰堤沉降的规律和机理。
      [方法]  介绍了盾构施工引起沉降的一般规律,通过盾构掘进穿越灰堤实测沉降曲线研究了灰堤沉降规律,并与数值模拟沉降规律、一般规律做了对比分析,分析了灰堤沉降突变原因,得出了灰堤沉降机理。
      [结果]  研究表明:灰堤抛石块头较大且不均匀,粘结力差、空隙大,隧道开挖时很难均匀开挖,容易造成超挖和欠挖现象,这是灰堤沉降与一般沉降规律差异原因所在;盾构机过后各测点同时向隧道掌子面方向快速滑移,有外部因素引起地层变形突变,实测规律与一般规律明显相悖;灰堤抛石重组,导致地层向掌子面滑移,得出灰堤地表沉降机理,表明灰堤加固对盾构安全施工至关重要。
      [结论]  研究成果可为其他类似工程提供参考。
    Abstract:
      [Introduction]  The paper aims to research the settlement regular and mechanism of the ash dam according to the similarities and differences of measured settlement and conventional settlement regular analysing results.
      [Method]  Firstly, the conventional settlement regular and mechanism of shield construction were introduced in details. Secondly, the settlement regular of the ash dam was researched by the measured settlement curve of the tunnel through the ash dam, and the measured settlement, numerical simulation of settlement and conventional settlement regular were comprised and analysed. Finally, the causes of the sudden change of the settlement of the ash dam were analysed, and the settlement mechanism of the ash dam was obtained.
      [Result]  The results show that the stone riprap of ash dam is large and uneven, its cohesive force is poor, and its gap is large, thus lead to shield excavate difficulty and easy to cause over-excavation and under-excavation, which is the reason for the difference between ash dam settlement and general settlement law. After the shield tunneling, all the measuring points are sliding towards the tunnel palm face rapidly, shows that there are some external factors causing formation deformation and mutation, the law of actual measurement is obviously inconsistent with the general law. The recombination of ash dam stone riprap structure causes the stratum to slip to the palm face, the surface subsidence mechanism of ash dam is obtained. The results of this paper also show that the ash dam reinforcement is very important to the shield construction safety.
      [Conclution]  The research results can provide references for other similar projects.
  • 图  1   盾构施工土体沉降图

    Figure  1.   Settlement figure of soil caused by shield construction

    图  2   测点布置与隧道管片上下对照图

    Figure  2.   Upper and lower contrast figure of measuring points and segments of tunnel

    图  3   隧道轴线上测点随盾构环数推进的沉降曲线

    Figure  3.   Settlement curve of measuring points on tunnel axis as shield construction

    图  4   三维有限元计算模型

    Figure  4.   Three-dimensional finite element calculation model

    图  5   隧道断面数值模型示意图

    Figure  5.   Schematic diagram of numerical model of tunnel section

    图  6   三维数值模拟切面图

    Figure  6.   Three-dimensional numerical simulation section diagram

    图  7   监测点实测和数值模拟沉降对比曲线

    Figure  7.   Comparison curves of measured and simulated settlement at monitoring points

    图  8   灰堤实际地层划分和2 016环后盾构推进地层滑移图

    Figure  8.   Diagram of actual stratigraphic classification and formation sliding as shield construction after the 2 016th segment

    图  9   盾构推进引起电厂灰堤地表的变形机理

    Figure  9.   Surface deformation mechanism of power plant ash dam as shield construction

    表  1   盾构施工引起的沉降发展阶段

    Table  1   Development stage of settlement caused by shield construction

    阶段 原因 沉降占总比例/% 出现时间及位置
    第1阶段:盾构到达前 密封舱内压力或网格式盾构切口、封板和网格板侧向面积与土体摩擦阻力大于水土压力,则隆起,否则下沉 0.00~4.50 切口前3.00~12.00 m
    第2阶段:开挖面到达前 开挖面土体受到挤压导致固结 0.00~44.00 切口前3.00 m至切口后1.00 m
    第3阶段:盾构通过时 土体扰动、盾壳与土摩擦、土体超挖 0.00~38.00 切口后1.00 m至盾尾脱出
    第4阶段:盾尾脱出时 盾尾空隙、注浆不及时 20.00~100.00 盾尾脱出后100 h以内
    下载: 导出CSV

    表  2   数值模拟计算参数

    Table  2   Numerical simulation calculation parameters

    土层名称 重度/(kN·m-3) 弹性模量/MPa 泊松比 摩擦角/(°) 粘聚力/kPa 抗拉强度/MPa
    淤泥 15.25 4.12 0.40 1.70 3.60 0.02
    淤泥质土 16.59 6.15 0.38 4.90 6.60 0.10
    灰堤混合层 21.00 8.13 0.30 32.73 14.19 1.00
    管片 25.00 34 500.00 0.167 57.32 4 690.00 4.69
    壁后注浆 21.00 400.00 0.25
    灰堤第一、二次加固层 21.00 494.37 0.20 21.63 2 536.11 6.23

    注:卸荷单元的弹性模量为灰堤混合层的0.5倍,其他参数不变。

    下载: 导出CSV
  • [1] 姜超. 电力隧道综合整治取得成效 [N]. 国家电网报,2014-05-29.
    [2] 罗洪. 架空线入地与城市发展 [J]. 光纤与电缆及其应用技术,2009(6): 40-41.
    [3] 姚宣德,王梦恕. 地铁浅埋暗挖法施工引起的地表沉降控制标准的统计分析 [J]. 岩石力学与工程学报,2006,25(10): 2030-2035.
    [4] 施成华. 城市隧道施工地层变形时空统一预测理论及应用研究 [D]. 长沙:中南大学,2007.
    [5] 梁浩,程池浩,廖少明,等. 泥水盾构穿越吹填土变形实测分析 [J]. 岩土工程学报,2013,35(增刊2): 848-852.
    [6] 郭玉海. 大直径土压平衡盾构引起的地表变形规律研究 [J]. 土木工程学报,2013,46(11): 128-137.
    [7] 王振飞,张成平,王剑晨. 富水砂卵石地层泥水盾构施工地层变形规律 [J]. 铁道工程学报,2013(9): 78-83.
    [8] 杨晓华. 砂卵石地层中复合式土压平衡盾构掘进参数及地层变形规律研究 [J]. 隧道建设,2014,34(8): 721-730.
    [9] 尹吕超,朱振宏,李玉珍,等. 日本隧道盾构新技术 [M]. 湖北:华中理工大学出版社,1999.
    [10] 陈在华. 地铁盾构隧道下穿出入段线隧道近接影响与控制技术研究 [D]. 成都:西南交通大学,2017.
    [11] 聂卫平,金晓华. 基于实测数据的盾构电缆隧道沉降规律与预测 [J]. 南方能源建设,2017,4(2): 86-89.
图(9)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-21
  • 修回日期:  2018-11-30
  • 刊出日期:  2020-07-10

目录

    Bo CAO

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回