高级检索

高空风能电站运维辅助系统研究与设计

何航, 汪少勇, 周家慷, 杨源, 张文鋆, 林侃

何航,汪少勇,周家慷,等. 高空风能电站运维辅助系统研究与设计[J]. 南方能源建设,2025,12(1):22-30.. DOI: 10.16516/j.ceec.2024-370
引用本文: 何航,汪少勇,周家慷,等. 高空风能电站运维辅助系统研究与设计[J]. 南方能源建设,2025,12(1):22-30.. DOI: 10.16516/j.ceec.2024-370
HE Hang, WANG Shaoyong, ZHOU Jiakang, et al. Research and design of high altitude wind power station operation and maintenance auxiliary system [J]. Southern energy construction, 2025, 12(1): 22-30. DOI: 10.16516/j.ceec.2024-370
Citation: HE Hang, WANG Shaoyong, ZHOU Jiakang, et al. Research and design of high altitude wind power station operation and maintenance auxiliary system [J]. Southern energy construction, 2025, 12(1): 22-30. DOI: 10.16516/j.ceec.2024-370
何航,汪少勇,周家慷,等. 高空风能电站运维辅助系统研究与设计[J]. 南方能源建设,2025,12(1):22-30.. CSTR: 32391.14.j.ceec.2024-370
引用本文: 何航,汪少勇,周家慷,等. 高空风能电站运维辅助系统研究与设计[J]. 南方能源建设,2025,12(1):22-30.. CSTR: 32391.14.j.ceec.2024-370
HE Hang, WANG Shaoyong, ZHOU Jiakang, et al. Research and design of high altitude wind power station operation and maintenance auxiliary system [J]. Southern energy construction, 2025, 12(1): 22-30. CSTR: 32391.14.j.ceec.2024-370
Citation: HE Hang, WANG Shaoyong, ZHOU Jiakang, et al. Research and design of high altitude wind power station operation and maintenance auxiliary system [J]. Southern energy construction, 2025, 12(1): 22-30. CSTR: 32391.14.j.ceec.2024-370

高空风能电站运维辅助系统研究与设计

基金项目: 国家重点研发计划项目“大型伞梯式陆基高空风力发电关键技术及装备”(2023YFB4203400);中国能源建设股份有限公司2022年重大科技专项“25 MW级高空风能发电技术与装备研究”(CEEC-2021-KJZX-03)
详细信息
    作者简介:

    何航,1987-,女,工程师,硕士,主要从事火力发电厂、海上风力发电厂电气设计工作(e-mail)hehang@gedi.com.cn

    通讯作者:

    何航,1987-,女,工程师,硕士,主要从事火力发电厂、海上风力发电厂电气设计工作(e-mail)hehang@gedi.com.cn

  • 中图分类号: TK89;TM614

Research and Design of High Altitude Wind Power Station Operation and Maintenance Auxiliary SystemEn

  • 摘要:
      目的  目前,国内及国际都已开展对高空风力发电技术的研究,主要集中在运行控制、机理分析和系统设计领域,尚未出现针对高空风能电站运维领域的研究成果。
      方法  文章提出1种高空风能电站智能运维辅助系统设计方案,为将来在高空风能电站推广应用智能运维技术、推进运维数字化建设工作提供思路。通过对我国首个示范性伞梯组合型高空风能电站进行调研,分析现阶段的运维痛点,设计1套高空风能电站智能运维辅助系统,以解决站内监视后台分散、运行数据表单多样、设备台账不成体系、故障维修历史不便追溯等问题。
      结果  基于微服务开发了1套高空风能电站智能运维可视化平台,实现集中监视发电系统设备状态,标准化设备台账,规范设备维修工单流程,监测运行环境安全,主动识别危险事件并输出报警。
      结论  高空风能电站是出现不久的新事物,其智能运维平台的设计应首先侧重于提高电站运行数据的集中可视化程度、推进设备数字化管理模式及保障电站运行环境安全,以匹配起步阶段的电站运维需求。随着以后高空风能发电系统的核心控制技术攻关和设备选型制造技术攻关的完成,高空风能电站智能运维技术可与之适配进步,进一步推进高空风能电站的兴起。
    Abstract:
      Objective  At present, domestic and international research on high-altitude wind power generation technology has been carried out, mainly in the fields of operation control, mechanism analysis and system design, but no research results have been found in the field of high-altitude wind power station operation and maintenance.
      Method  This paper proposed a design scheme of intelligent operation and maintenance assistance system for high-altitude wind power stations, which provided ideas for the future popularization and application of intelligent operation and maintenance technology in high-altitude wind power stations and the promotion of digital operation and maintenance construction. Based on the investigation of China's first demonstrative high-altitude wind power station with an umbrella-ladder combination system, the pain points of operation and maintenance at the present stage were analyzed, and a set of intelligent operation and maintenance assistance system was designed to solve the problems such as scattered monitoring and background in the station, various operating data forms, unsystematic equipment records and inconvenient tracing of fault maintenance history.
      Result  Based on microservices, an intelligent operation and maintenance visualization platform for high-altitude wind power station is developed to realize centralized monitoring of power generation system equipment status, standardization of equipment records and maintenance ticket process, monitoring of operating environment safety, active identification of dangerous events and output alarm.
      Conclusion  High-altitude wind power station is an emerging concept in energy sector. The design of its intelligent operation and maintenance platform should first focus on improving the centralized visualization degree of power station operation data, promoting the digital management mode of equipment and ensuring the safety of power station operation environment, so as to match the operation and maintenance requirements of power station in the initial stage. With the advance in the core control technology, equipment selection and manufacturing technology of high-altitude wind power generation system in the future, the intelligent operation and maintenance technology of high-altitude wind power station can be adapted to the progress, and further promote the rise of high-altitude wind power station.
  • 图  1   系统架构图

    Figure  1.   System architecture diagram

    图  2   功能模块组织结构图

    Figure  2.   Function module organization chart

    图  3   分级完善设备信息

    Figure  3.   Detailed device information at different level

    图  4   设备台账模板

    Figure  4.   Equipment record template

    图  5   维修单逻辑流程图

    Figure  5.   Maintenance ticket logical flow diagram

    图  6   通过移动端上报故障

    Figure  6.   Fault reporting on mobile terminal

    表  1   伞组型高空风电机组运行参数分类分级表

    Table  1   Umbrella-type high-altitude wind turbine running parameter classification table

    主设备类别 运行参数
    高优先 低优先
    氦气球 氦气球风向
    氦气球温度
    氦气球气压
    氦气球/平衡伞/
    做工伞
    高度 空间坐标
    水平风速 气动升力系数
    气动阻力系数
    下一时刻预测位置
    平衡伞/做工伞 伞与水平夹角 伞电机温度
    伞电机工作电流 伞刹车电压
    伞编码器圈数 伞电池电压
    伞电池充电电流
    主缆绳 主缆绳长度 主缆绳气动阻力系数
    主缆绳运动状态 伞绳总长度
    主缆绳与水平夹角 伞绳线密度
    发电机 机组发电量
    机组功率
    机组变流器电网电压
    机组变流器母线电压
    机组变流器模块温度
    卷扬机/容绳绞车 电机转速 电机定子电压
    电机电流 电机绕组温度U
    电机输出转矩 电机绕组温度V
    重量传感器通道 电机绕组温度W
    减速机润滑出油口PT100 电机前轴承温度
    电机后轴承温度
    卷扬机 轴承润滑冷却器出油口PT100
    轴承润滑出油口PT100
    阻尼刹车水温
    阻尼刹车水压
    容绳绞车 机组当前排绳位置
    机组排绳实际速度
    机组排绳实际扭矩
    机组筒上缆绳长度
    机组放出缆绳长度
    液压站 液压站油温
    液压站油压
    下载: 导出CSV

    表  2   监控区域典型报警事件

    Table  2   Typical alarm events in the monitoring area

    监控区域典型报警事件
    厂区大门进入区域
    充气桩区域进入区域,未戴安全帽,人员摔倒
    升空桩区域进入区域,未戴安全帽,异物闯入、
    区域入侵、气球过近、鸟类
    地面机械设备组进入区域,未戴安全帽
    主控室进入区域,区域入侵,打电话
    配电间及二次设备间进入区域,区域入侵,未戴安全帽
    下载: 导出CSV

    表  3   运维建议卡

    Table  3   Operation and maintenance suggestion card

    气象特征运维建议
    雷电黄色预警关注天气变化,巡视站内防雷设施,关注空中
    设备无线通讯状况,准备收伞
    雷电橙色预警勿外出,切断站内非安全生产用电
    降雨蓝色预警加强巡视容绳绞车、缆绳通道、万向滑轮座和卷扬机
    降雨黄色预警关注雷电信息,准备收伞
    降雨橙色预警避免户外工作,雨后需巡视缆绳通道、万向滑轮座和
    卷扬机处积水情况,及时清理
    紫外线等级4减少白天的户外工作,调整当日巡视工作的时间安排
    紫外线等级5避免户外工作,下一次计划内的停机期间重点查看
    室外设备有无老化迹象,做好维护工作
    高温黄色预警户外工作注意控制时长
    高温橙色预警减少户外工作,调整当日巡视工作的时间安排,
    关注伞组电机电流是否正常
    高温红色预警避免户外工作,重点监视室外设备的温度监测数据,
    加强巡视空调设备的运行状况
    下载: 导出CSV
  • [1] 蔡彦枫, 李晓宇. 面向空中风力发电系统的高空风场观测 [J]. 南方能源建设, 2024, 11(1): 1-9. DOI: 10.16516/j.ceec.2024.1.01.

    CAI Y F, LI X Y. High-altitude wind field observation of airborne wind energy system [J]. Southern energy construction, 2024, 11(1): 1-9. DOI: 10.16516/j.ceec.2024.1.01.

    [2] 邵垒, 毛虹霖, 邢胜, 等. 高空风力发电发展现状及关键技术研究综述 [J]. 新能源进展, 2020, 8(6): 477-485. DOI: 10.3969/j.issn.2095-560X.2020.06.005.

    SHAO L, MAO H L, XING S, et al. Review on development status and key technology of airborne wind energy system [J]. Advances in new and renewable energy, 2020, 8(6): 477-485. DOI: 10.3969/j.issn.2095-560X.2020.06.005.

    [3] 韩爽, 刘杉. 高空风力发电关键技术、现状及发展趋势 [J]. 分布式能源, 2024, 9(1): 1-9. DOI: 10.16513/j.2096-2185.DE.2409101.

    HAN S, LIU S. Key technologies, current status and development trends of high-altitude wind power generation [J]. Distributed energy, 2024, 9(1): 1-9. DOI: 10.16513/j.2096-2185.DE.2409101.

    [4] 闫溟, 陈广强, 陈冰雁, 等. 高空风力发电机组概念设计研究 [J]. 风能, 2017(9): 70-72. DOI: 10.3969/j.issn.1674-9219.2017.09.025.

    YAN M, CHEN G Q, CHEN B Y, et al. Research on conceptual design of high-altitude wind turbine [J]. Wind energy, 2017(9): 70-72. DOI: 10.3969/j.issn.1674-9219.2017.09.025.

    [5] 姜阳, 陆超, 袁志昌, 等. 高空风力发电系统能量捕获及变换技术: 现状与展望 [J/OL]. (2024-08-29) [2024-09-03]. https://link.cnki.net/urlid/11.2107.TM.20240829.1325.012.

    JIANG Y, LU C, YUAN Z C, et al. Energy capture and conversion technology of high altitude wind power generation systems: current situation and prospect [J/OL]. (2024-08-29) [2024-09-03]. https://link.cnki.net/urlid/11.2107.TM.20240829.1325.012.

    [6] 肖利坤. 国内高空风力发电技术应用现状 [J]. 农村电气化, 2023(7): 66-68. DOI: 10.13882/j.cnki.ncdqh.2023.07.017.

    XIAO L K. Research on application status of high altitude wind power generation technology in China [J]. Rural electrification, 2023(7): 66-68. DOI: 10.13882/j.cnki.ncdqh.2023.07.017.

    [7] 王波. 国内首创高空风能项目开工 [J]. 能源研究与信息, 2022, 38(1): 61.

    WANG B. China's first high-altitude wind energy project started [J]. Energy research and information, 2022, 38(1): 61.

    [8] 张建军. 一种高空风能的发电系统: 201920651587.0 [P]. 2020-05-05.

    ZHANG J J. A high-altitude wind power generation system: 201920651587.0 [P]. 2020-05-05.

    [9] 邵垒, 贺佳伟, 曾宪君, 等. 翼型伞衣高空发电系统: 202210127113.2 [P]. 2022-05-06.

    SHAO L, HE J W, ZENG X J, et al. Aerofoil canopy high-altitude power generation system: 202210127113.2 [P]. 2022-05-06.

    [10] 牛力钊, 尹阔, 雷崇晖. 25 MW级高空风电用摩擦卷扬机设计及优化 [J/OL]. (2024-10-28) [2024-11-10]. http://kns.cnki.net/kcms/detail/44.1715.TK.20241025.1730.006.html.

    NIU L Z, YIN K, LEI C H. Design and optimization of friction winch for 25 MW airborne wind energy systems [J/OL]. (2024-10-28) [2024-11-10]. http://kns.cnki.net/kcms/detail/44.1715.TK.20241025.1730.006.html.

    [11] 罗必雄, 章雪萌, 李晓宇, 等. 一种高空风电并网系统的运行优化方法及装置: 202410770606.7 [P]. 2024-10-15.

    LUO B X, ZHANG X M, LI X Y, et al. Operation optimization method and device for high-altitude wind power grid-connected system: 202410770606.7 [P]. 2024-10-15.

    [12] 李苇林, 王二峰, 刘晓东. 海上风电场智慧运维管理系统研究 [J]. 中国设备工程, 2021(23): 36-37. DOI: 10.3969/j.issn.1671-0711.2021.23.021.

    LI W L, WANG E F, LIU X D. Research on intelligent operation and maintenance management system of offshore wind farm [J]. China plant engineering, 2021(23): 36-37. DOI: 10.3969/j.issn.1671-0711.2021.23.021.

    [13] 杨源, 汪少勇, 谭江平, 等. 海上风电场智慧运维管理系统 [J]. 南方能源建设, 2021, 8(1): 74-79. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.011.

    YANG Y, WANG S Y, TAN J P, et al. The intelligent operation and maintenance management system for offshore wind farms [J]. Southern energy construction, 2021, 8(1): 74-79. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.011.

    [14] 学鸿羽. 浅谈风电场运维管理 [C]// 北京大学经济管理学院. 决策论坛——政用产学研一体化协同发展学术研讨会, 北京, 2015-12-18. 北京: 《决策与信息》杂志社, 2016: 178, 180.

    XUE H Y. Talk about wind farm operation and maintenance management [C]// School of Economics, Peking University. Decision forum: academic seminar on the coordinated development of government, application, industry, research and integration, peking, December 18, 2015. Beijing: Decision and information magazine, 2016: 178, 180.

    [15] 张艳锋, 田震, 杨海涛, 等. 风电场智慧运维管理浅谈 [J]. 中国设备工程, 2019 (15): 35-37. DOI: 10.3969/j.issn.1671-0711.2019.15.011.

    ZHANG Y F, TIAN Z, YANG H T, et al. Talk about intelligent operation and maintenance management of wind farm [J]. China plant engineering, 2019 (15): 35-37. DOI: 10.3969/j.issn.1671-0711.2019.15.011.

    [16] 阳熹, 杨源. 智慧型海上风电场一体化监控系统方案设计 [J]. 南方能源建设, 2019, 6(1): 42-48. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.008.

    YANG X, YANG Y. Design of smart offshore wind farm integration monitoring system [J]. Southern energy construction, 2019, 6(1): 42-48. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.008.

    [17] 张建军. 一种中高空风能发电系统的控制方法: 201711299009.7 [P]. 2018-05-15.

    ZHANG J J. Control method of mid-high altitude wind power generation system: 201711299009.7 [P]. 2018-05-15.

    [18] 李金伟, 高鹏, 王文帅. 光伏电站智慧化运维设计 [J]. 红水河, 2024, 43(4): 59-64. DOI: 10.3969/j.issn.1001-408X.2024.04.013.

    LI J W, GAO P, WANG W S. Intelligent operation and maintenance design for photovoltaic power stations [J]. Hongshui river, 2024, 43(4): 59-64. DOI: 10.3969/j.issn.1001-408X.2024.04.013.

    [19] 廖永行, 童惠祺. 高空无人飞行器运维管理系统的设计与实现 [J]. 电子技术与软件工程, 2023 (3): 1-4.

    LIAO Y X, TONG H Q. Design and implementation of high altitude unmanned aerial vehicle operation and maintenance management system [J]. Electronic technology & software engineering, 2023 (3): 1-4.

    [20] 李晓宇, 张炳成, 任宗栋, 等. 高空风力发电系统安全风险评估体系 [J]. 中国勘察设计, 2023(增刊1): 26-29.

    LI X Y, ZHANG B C, REN Z D, et al. High altitude wind power generation system safety risk assessment system [J]. China engineering consulting, 2023(Suppl.1): 26-29.

图(6)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-30
  • 修回日期:  2024-11-19
  • 网络出版日期:  2025-01-23
  • 刊出日期:  2025-01-23

目录

    LIN Kan

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回