Flexible Peak Shaving Technology for Coal-Fired Boilers Based on Intelligent Control
-
摘要:
目的 随着对火电机组灵活调峰的需求骤增及信息技术的飞速发展,火电企业正由传统运行及管理模式,向更加清洁、高效、可靠的数字化及智能化方向发展,如何提高燃煤机组灵活调峰过程中的智能化、精准化及可靠性,已成为行业内人员所关注的重点问题。 方法 文章针对深度调峰的背景需求,对燃煤锅炉灵活调峰中的典型问题进行总结,分析了应用于锅炉的控制理论整体发展状况。基于此,分别从锅炉燃烧性能优化控制、宽负荷脱硝精准控制、锅炉运行能效控制、主辅机设备监测及诊断等4个方面对基于智能控制的燃煤锅炉灵活调峰算法模型及应用进行了综合分析。 结果 在此基础上,详细探讨了智能控制理论及模型在燃煤锅炉灵活调峰中的研究进展及应用效果。 结论 目前,基于燃煤锅炉灵活调峰过程中的常见问题,需要在燃烧组织方式稳燃能力深度提升的基础上,提高基础数据获取准确性,促进数据及知识的互补融合,加强多目标优化控制及DCS控制系统优化等,同时兼顾调峰经济性与机组寿命之间的辩证优化关系,从而为提高燃煤锅炉灵活调峰能力提供智能化及精准化解决方案。 Abstract:Introduction With the increasing demand for flexible peak shaving of thermal power units and the rapid development of information technology, thermal power enterprises are shifting from the traditional operation and management mode toward a cleaner, more efficient, reliable digital and intelligent mode. How to improve the intelligence, precision and reliability of coal-fired units in the flexible peak-shaving process has become a key issue of concern to those in the industry. Method Aiming at the deep peak shaving demand of the power system, this paper summarized the typical problems in the process of flexible peak shaving and analyzed the overall development of control theory applied to boilers in coal-fired units. Based on this, this paper conducted a comprehensive analysis of coal-fired boiler flexible peak shaving algorithm models and their applications based on intelligent control from four aspects: optimization control of boiler combustion performance, precise control of wide-load denitration, boiler operational energy efficiency control, and monitoring and diagnosis of main and auxiliary machinery equipment. Result On this basis, the research progress and application effects of intelligent control theory and models in the flexible peak shaving of coal-fired boilers are discussed in detail. Conclusion At present, based on the common problems in the flexible peak-shaving process of coal-fired boilers, it is necessary to improve the accuracy of basic data acquisition, promote the complementary integration of data and knowledge, and strengthen multi-objective optimization control and DCS control system optimization on the basis of the stable combustion ability improvement of the combustion organization method. At the same time, it is important to consider the dialectical optimization relationship between peak shaving economy and unit life, thereby providing intelligent and precise solutions to improve the flexible peak shaving capabilities of coal-fired boilers. -
图 9 EC-ELM模型结构图[51]
Fig. 9 Diagram of EC-ELM mode
图 10 模型预测结果对比[51]
Fig. 10 Comparison of model prediction results
图 12 泵模糊PID控制系统结构图[59]
Fig. 12 Structure block diagram of pump fuzzy PID control system
-
[1] 国家能源局. 国家能源局综合司关于做好可再生能源发展“十四五”规划编制工作有关事项的通知 [EB/OL]. (2020-04-09) [2023-12-01]. http://zfxxgk.nea.gov.cn/2020-04/09/c_138978661.htm. National Energy Administration. Notice of the Comprehensive Department of the National Energy Administration on doing a good job in the preparation of the "14th five-year plan" for the development of renewable energy [EB/OL]. (2020-04-09) [2023-12-01]. http://zfxxgk.nea.gov.cn/2020-04/09/c_138978661.htm. [2] 王风云, 张爽. 我国可再生能源发电趋势与市场空间研究——兼析“十四五”期间可再生能源发展潜力 [J]. 价格理论与实践, 2020(4): 36-40. DOI: 10.19851/j.cnki.cn11-1010/f.2020.04.108. WANG F Y, ZHANG S. Research on the trend and market capacity of renewable energy power generation in China−and predictive analysis of the renewable energy development during the 14th five-year Plan period [J]. Price: theory & practice, 2020(4): 36-40. DOI: 10.19851/j.cnki.cn11-1010/f.2020.04.108. [3] 王佳蕊, 孙勇, 胡枭, 等. 基于MICP的多能耦合综合能源系统可再生能源消纳能力研究 [J]. 电力建设, 2023, 44(8): 157-170. DOI: 10.12204/j.issn.1000-7229.2023.08.015. WANG J R, SUN Y, HU X, et al. Research on renewable energy absorption capacity of multi-energy coupling integrated energy systems based on MICP [J]. Electric power construction, 2023, 44(8): 157-170. DOI: 10.12204/j.issn.1000-7229.2023.08.015. [4] 岑彬. “双碳”背景下可再生能源发展中“弃风弃光”的问题及消纳措施 [J]. 中阿科技论坛(中英文), 2022(10): 60-63. CEN B. Study on the "forced abandonment of wind and light" in the development of renewable energy under the background of "dual carbon" and its mitigation measures [J]. China-Arab states science and technology forum, 2022(10): 60-63. [5] 袁家海, 张浩楠, 黄辉. 煤电与新能源耦合发展模式探析 [J]. 中国电力企业管理, 2023(1): 20-22. YUAN J H, ZHANG H N, HUANG H. Analysis on the coupling development model of coal power and new energy [J]. China power enterprise management, 2023(1): 20-22. [6] 王金星, 卓建坤, 李菁, 等. 适应燃煤电厂灵活调峰的安全改造技术探讨 [C]//2017热电联产智能高效与灵活性改造技术研讨会论文集, 丹东, 2017-08-16. 丹东: 国家火力发电工程技术研究中心, 2017: 80-86. WANG J X, ZHUO J K, LI J, et al. Discussion on safety transformation technology suitable for flexible peak shaving of coal-fired power plant [C]//Proceedings of the 2017 Symposium on Smart, Efficient and Flexible Transformation Technology of Cogeneration, Dandong, August 16, 2017. Dandong: National Thermal Power Engineering Technology Research Center, 2017: 80-86. [7] 张少强, 陈露, 刘子易, 等. 大型燃煤锅炉深度调峰关键问题探讨 [J]. 南方能源建设, 2022, 9(3): 16-28. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.003. ZHANG S Q, CHEN L, LIU Z Y, et al. Discussion on key problems of depth peak adjustment for large coal-fired boilers [J]. Southern energy construction, 2022, 9(3): 16-28. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.003. [8] 周俊波, 刘茜, 张华, 等. 典型燃煤锅炉低负荷及变负荷运行控制特性分析 [J]. 热力发电, 2018, 47(9): 34-40. DOI: 10.19666/j.rlfd.201803071. ZHOU J B, LIU X, ZHANG H, et al. Control characteristic analysis of typical coal-fired boilers during low load or variable load running [J]. Thermal power generation, 2018, 47(9): 34-40. DOI: 10.19666/j.rlfd.201803071. [9] 国家发展改革委, 国家能源局. 电力发展“十三五”规划(2016—2020) [R]. 2016: 1-46. National Development and Reform Commission, National Energy Administration. 13th five year plan for electric power development (2016—2020) [R]. 2016: 1-46. [10] 国家发展改革委, 国家能源局, 工业和信息化部. 关于推进“互联网+”智慧能源发展的指导意见 [R]. 2016: 4-9. National Development and Reform Commission, National Energy Administration, Ministry of Industry and Information Technology of the People's Republic of China. Guidance on promoting the development of "Internet +" smart energy [R]. 2016: 4-9. [11] 黄建平, 胡志勇, 吴小明, 等. 回转式空预器联合热管空预器防堵应用及效果 [J]. 电力科技与环保, 2021, 37(6): 31-39. DOI: 10.19944/j.eptep.1674-8069.2021.06.005. HUANG J P, HU Z Y, WU X M, et al. Application and effect amalysis of rotary air prebeater combined with heat pipe air preheater preveuting blocking technology [J]. Electric power technology and environmental protection, 2021, 37(6): 31-39. DOI: 10.19944/j.eptep.1674-8069.2021.06.005. [12] 翟博. 三分仓回转式空预器防堵灰技术改造研究 [J]. 科技与创新, 2022(18): 38-40. DOI: 10.15913/j.cnki.kjycx.2022.18.011. ZHAI B. Research on the technical transformation of the three section rotary air preheater to prevent ash blocking [J]. Science and technology & innovation, 2022(18): 38-40. DOI: 10.15913/j.cnki.kjycx.2022.18.011. [13] 昂永波. 350 MW超临界机组深度调峰运行优化调整技术分析 [J]. 内蒙古电力技术, 2018, 36(1): 32-36. DOI: 10.3969/j.issn.1008-6218.2018.01.012. ANG Y B. Adjustment technology analysis of deep cyclic operation optimization of 350 MW supercritical unit [J]. Inner Mongolia electric power, 2018, 36(1): 32-36. DOI: 10.3969/j.issn.1008-6218.2018.01.012. [14] 陈辉, 王爱英, 戴维葆, 等. 高灰分烟煤煤粉细度对燃烧特性及低负荷稳燃影响研究 [J]. 电站系统工程, 2020, 36(5): 13-15. CHEN H, WANG A Y, DAI W B, et al. Study on effect of pulverized coal fineness on combustion characteristics and low load stable combustion of high ash bituminous coal [J]. Power system engineering, 2020, 36(5): 13-15. [15] 刘增春, 刘江涛. 高海拔地区660 MW超超临界煤电机组深度调峰试验解析 [J]. 中国新技术新产品, 2020(11): 15-17. DOI: 10.13612/j.cnki.cntp.2020.11.008. LIU Z C, LIU J T. Analysis on deep peak shaving test of 660 MW ultra supercritical coal fired power unit in high altitude area [J]. New technology & new products of China, 2020(11): 15-17. DOI: 10.13612/j.cnki.cntp.2020.11.008. [16] 华敏, 董益华, 项群扬, 等. 超临界660 MW燃煤机组深度调峰试验研究 [J]. 电站系统工程, 2019, 35(5): 35-36, 40. HUA M, DONG Y H, XIANG Q Y, et al. Research on deep load regulation of 660 MW supercritical coal-fired units [J]. Power system engineering, 2019, 35(5): 35-36, 40. [17] 王振波, 李国成. 工业锅炉技术 [M]. 北京: 中国石化出版社, 2010: 145-148. WANG Z B, LI G C. Industrial boiler technology [M]. Beijing: China Petrochemical Press, 2010: 145-148. [18] 刘志刚. 电厂锅炉自动化控制系统分析 [J]. 中国石油和化工标准与质量, 2012, 32(8): 257. DOI: 10.3969/j.issn.1673-4076.2012.08.231. LIU Z G. Analysis of power plant boiler automatic control system [J]. China petroleum and chemical standard and quality, 2012, 32(8): 257. DOI: 10.3969/j.issn.1673-4076.2012.08.231. [19] 白鑫. 锅炉控制的智能优化算法研究 [D]. 石家庄: 河北科技大学, 2019. BAI X. Research on intelligent optimization algorithm for boiler control [D]. Shijiazhuang: Hebei University of Science and Technology, 2019. [20] 赵静, 王敏. 基于PLC锅炉专家PID智能控制的研究 [J]. 工业炉, 2018, 40(5): 59-61. DOI: 10.3969/j.issn.1001-6988.2018.05.016. ZHAO J, WANG M. Research on intelligent control of boiler expert PID based on PLC [J]. Industrial furnace, 2018, 40(5): 59-61. DOI: 10.3969/j.issn.1001-6988.2018.05.016. [21] 刘华, 刘敏层. 基于模糊PID在锅炉温度控制系统的仿真研究 [J]. 自动化与仪表, 2018, 33(4): 20-25. DOI: 10.19557/j.cnki.1001-9944.2018.04.005. LIU H, LIU M C. Simulation research of boiler temperature control system based on fuzzy PID [J]. Automation & instrumentation, 2018, 33(4): 20-25. DOI: 10.19557/j.cnki.1001-9944.2018.04.005. [22] 张建宏. 基于自适应PID控制算法的壁挂式锅炉控制软件开发 [D]. 西安: 西安电子科技大学, 2009. ZHANG J H. The development of the control software of the wall-mounted gas boiler based on the adaptive PID control [D]. Xi'an: Xidian University, 2009. [23] 许天鹏. 锅炉汽包水位的无模型自适应PID控制研究 [D]. 兰州: 兰州理工大学, 2013. XU T P. Research on model-free adaptive PID control of boiler drum water level [D]. Lanzhou: Lanzhou University of Technology, 2013. [24] 黎丹. 基于无模型自适应控制算法的锅炉汽包水位控制研究 [D]. 南宁: 广西大学, 2016. LI D. Research of boiler drum level based on model-free adaptive control [D]. Nanning: Guangxi University, 2016. [25] 刘晓丹. 基于RBF模糊神经网络的船用锅炉汽包水位控制研究 [D]. 大连: 大连海事大学, 2008. LIU X D. Study on control of water level in marine boiler based on RBF fuzzy neural network [D]. Dalian: Dalian Maritime University, 2008. [26] 刘佳. 基于神经网络PID控制算法的热水锅炉燃烧控制的研究 [D]. 秦皇岛: 燕山大学, 2005. LIU J. Study on combustion control of hot water boiler based on neural network PID [D]. Qinhuangdao: Yanshan University, 2005. [27] 颜廷学, 何岩, 武旭, 等. 一种燃烧锅炉稳燃控制方法: CN113847620A [P]. 2021-12-28. YAN T X, HE Y, WU X, et al. A stable combustion control method for combustion boiler: CN113847620A [P]. 2021-12-28. [28] 刘树明. 基于神经网络的锅炉内火焰燃烧稳定性研究 [J]. 计算机仿真, 2012, 29(8): 187-189, 195. DOI: 10.3969/j.issn.1006-9348.2012.08.045. LIU S M. Research on combustion within boiler stability based on neural network [J]. Computer simulation, 2012, 29(8): 187-189, 195. DOI: 10.3969/j.issn.1006-9348.2012.08.045. [29] 蔡国源, 牛玉广, 刘雪菲, 等. 基于图像卷积变分自编码的电站锅炉燃烧稳定性评价方法 [J]. 仪器仪表学报, 2022, 43(3): 210-220. DOI: 10.19650/j.cnki.cjsi.J2108460. CAI G Y, NIU Y G, LIU X F, et al. Combustion stability judgment of power plant boiler based on image convolutional variational auto-encoder [J]. Chinese journal of scientific instrument, 2022, 43(3): 210-220. DOI: 10.19650/j.cnki.cjsi.J2108460. [30] HAN W, SUN Z, SCHOLTISSEK A, et al. Machine Learning of ignition delay times under dual-fuel engine conditions [J]. Fuel, 2021, 288: 119650. DOI: 10.1016/j.fuel.2020.119650. [31] XING J K, LUO K, HEINZ P, et al. Predicting kinetic parameters for coal devolatilization by means of Artificial Neural Networks [J]. Proceedings of the combustion institute, 2019, 37(3): 2943-2950. DOI: 10.1016/j.proci.2018.05.148. [32] 张振宇, 王刚, 刘宗奎, 等. 330 MW机组深度调峰控制系统问题分析及优化 [J]. 能源研究与管理, 2021(2): 119-123. DOI: 10.16056/j.2096-7705.2021.02.023. ZHANG Z Y, WANG G, LIU Z K, et al. Analysis and optimization of deep peak load regulation control system for 330 MW power unit [J]. Energy research and management, 2021(2): 119-123. DOI: 10.16056/j.2096-7705.2021.02.023. [33] 王子杰, 李健, 孙万云. 基于神经网络和遗传算法的锅炉燃烧优化方法 [J]. 华北电力大学学报, 2008, 35(1): 14-17. DOI: 10.3969/j.issn.1007-2691.2008.01.004. WANG Z J, LI J, SUN W Y. Boiler combustion optimization based on neural network and genetic algorithm [J]. Journal of North China Electric Power University, 2008, 35(1): 14-17. DOI: 10.3969/j.issn.1007-2691.2008.01.004. [34] 顾燕萍, 赵文杰, 吴占松. 采用最优MVs决策模型的电站锅炉燃烧优化 [J]. 中国电机工程学报, 2012, 32(2): 39-44. DOI: 10.13334/j.0258-8013.pcsee.2012.02.009. GU Y P, ZHAO W J, WU Z S. An optimal MVs decision-model for boiler combustion optimization [J]. Proceedings of the CSEE, 2012, 32(2): 39-44. DOI: 10.13334/j.0258-8013.pcsee.2012.02.009. [35] 薛阳, 叶建华, 钱虹, 等. 火电机组过热汽温神经网络控制的研究 [J]. 上海电力学院学报, 2009, 25(1): 35-38. DOI: 10.3969/j.issn.1006-4729.2009.01.010. XUE Y, YE J H, QIAN H, et al. Research of neural network control of the superheated steam temperature of fossil-fired power station [J]. Journal of Shanghai University of Electric Power, 2009, 25(1): 35-38. DOI: 10.3969/j.issn.1006-4729.2009.01.010. [36] 吴智群, 黄廷辉, 胡洪华, 等. 电站锅炉智能燃烧优化技术的应用研究 [J]. 热力发电, 2008, 37(9): 23-27, 31. DOI: 10.19666/j.rlfd.2008.09.007. WU Z Q, HUANG T H, HU H H, et al. Study on application of intelligent combustion-optimizing technology on utility boilers [J]. Thermal power generation, 2008, 37(9): 23-27, 31. DOI: 10.19666/j.rlfd.2008.09.007. [37] 沙骁. 宽负荷火电机组锅炉受热面超温分析及智能预测研究 [D]. 北京: 清华大学, 2021. SHA X. Research on over-temperature analysis and intelligent prediction of boiler heating surface of wide-load thermal power unit [D]. Beijing: Tsinghua University, 2021. [38] 陈鑫, 王乃斌, 刘利, 等. 大数据技术应用于火电机组深度调峰的研究 [J]. 电力设备管理, 2018(10): 53-55. CHEN X, WANG N B, LIU L, et al. Study on the application of big data technology in deep peak regulation of thermal power units [J]. Electric power equipment management, 2018(10): 53-55. [39] 王政, 刘继伟. 电站锅炉燃烧优化技术的应用与发展 [J]. 华北电力技术, 2015(11): 63-70. DOI: 10.16308/j.cnki.issn1003-9171.2015.11.011. WANG Z, LIU J W. Application and development of boiler combustion optimization technology [J]. North China electric power, 2015(11): 63-70. DOI: 10.16308/j.cnki.issn1003-9171.2015.11.011. [40] 王立, 王燕晋, 李战国, 等. 火力发电机组深度调峰试验及优化 [J]. 发电设备, 2019, 33(2): 133-137. DOI: 10.3969/j.issn.1671-086X.2019.02.014. WANG L, WANG Y J, LI Z G, et al. Deep peak shaving tests and optimization for thermal power units [J]. Power equipment, 2019, 33(2): 133-137. DOI: 10.3969/j.issn.1671-086X.2019.02.014. [41] 李彦军, 郭洪远, 任海彬, 等. 基于灵活性改造的机组深度调峰模式运行研究 [J]. 中国高新科技, 2020(19): 96-97. DOI: 10.3969/j.issn.2096-4137.2020.19.041. LI Y J, GUO H Y, REN H B, et al. Research on unit deep peak shaving mode operation based on flexibility transformation [J]. China high and new technology, 2020(19): 96-97. DOI: 10.3969/j.issn.2096-4137.2020.19.041. [42] 周昊, 茅建波, 池作和, 等. 燃煤锅炉低氮氧化物燃烧特性的神经网络预报 [J]. 环境科学, 2002, 23(2): 18-22. DOI: 10.13227/j.hjkx.2002.02.004. ZHOU H, MAO J B, CHI Z H, et al. Predicting low NO x combustion property of a coal-fired boiler [J]. Environmental science, 2002, 23(2): 18-22. DOI: 10.13227/j.hjkx.2002.02.004. [43] 周昊, 朱洪波, 茅建波, 等. 大型四角切圆燃烧锅炉NO x排放特性的神经网络模型 [J]. 中国电机工程学报, 2002, 22(1): 33-37. DOI: 10.13334/j.0258-8013.pcsee.2002.01.007. ZHOU H, ZHU H B, MAO J B, et al. An artificial neural network model on NO x emission property of a high capacity tangentially firing boiler [J]. Proceedings of the CSEE, 2002, 22(1): 33-37. DOI: 10.13334/j.0258-8013.pcsee.2002.01.007. [44] 方海泉, 薛惠锋, 李宁, 等. 基于贝叶斯神经网络遗传算法的锅炉燃烧优化 [J]. 系统仿真学报, 2015, 27(8): 1790-1795. DOI: 10.16182/j.cnki.joss.2015.08.020. FANG H Q, XUE H F, LI N, et al. Boiler combustion optimization based on Bayesian neural network and genetic algorithm [J]. Journal of system simulation, 2015, 27(8): 1790-1795. DOI: 10.16182/j.cnki.joss.2015.08.020. [45] 王淅芬, 罗自学, 周怀春. 基于炉内温度分布的NO x排放特性的神经网络模型 [J]. 能源技术, 2009, 30(3): 133-136, 148. WANG X F, LUO Z X, ZHOU H C. Neural network model on NO x emission with furnace temperature distribution in a boiler [J]. Energy technology, 2009, 30(3): 133-136, 148. [46] 张振星. 基于智能优化算法的电站锅炉燃烧优化 [D]. 北京: 华北电力大学, 2015. ZHANG Z X. Utility boiler combustion optimization based on intelligent optimization algorithm [D]. Beijing: North China Electric Power University, 2015. [47] 景雪晖, 张涛, 周曙明, 等. 灵活性深度调峰下锅炉NO x排放的神经网络方法预报 [J]. 上海电力学院学报, 2019, 35(3): 215-220. DOI: 10.3969/j.issn.1006-4729.2019.03.004. JING X H, ZHANG T, ZHOU S M, et al. Neural network prediction of NO x emission characteristics of boiler under flexibility and deep peak shaving [J]. Journal of Shanghai University of Electric Power, 2019, 35(3): 215-220. DOI: 10.3969/j.issn.1006-4729.2019.03.004. [48] 李诚. 深度调峰下燃煤机组低碳运行与氮氧化物协同优化脱除 [D]. 北京: 清华大学, 2021. LI C. Low-carbon operation and synergistic optimization of nitrogen oxide removal of coal-fired power plants under deep peak regulation [D]. Beijing: Tsinghua University, 2021. [49] TAN P, HE B, ZHANG C, et al. Dynamic modeling of NO x emission in a 660 MW coal-fired boiler with long short-term memory [J]. Energy, 2019, 176: 429-436. DOI: 10.1016/j.energy.2019.04.020. [50] YANG G T, WANG Y N, LI X L. Prediction of the NO x emissions from thermal power plant using long-short term memory neural network [J]. Energy, 2020, 192: 116597. DOI: 10.1016/j.energy.2019.116597. [51] 唐振浩, 朱得宇, 李扬. 基于数据驱动的燃煤锅炉NO x排放浓度动态修正预测模型 [J]. 中国电机工程学报, 2022, 42(14): 5182-5193. DOI: 10.13334/j.0258-8013.pcsee.211426. TANG Z H, ZHU D Y, LI Y. Data driven based dynamic correction prediction model for NO x emission of coal fired boiler [J]. Proceedings of the CSEE, 2022, 42(14): 5182-5193. DOI: 10.13334/j.0258-8013.pcsee.211426. [52] 翁卫国, 周灿, 王丁振. 1000 MW燃煤机组变负荷条件下颗粒物排放特性研究 [J]. 能源工程, 2018, 38(2): 1-6. DOI: 10.16189/j.cnki.nygc.2018.02.001. WENG W G, ZHOU C, WANG D Z. Study on particle emission in a1000 MW coal-fired unit under varying loads [J]. Energy engineering, 2018, 38(2): 1-6. DOI: 10.16189/j.cnki.nygc.2018.02.001.[53] 鲍铁军, 刘建平, 侯志, 等. 440 t/h循环流化床机组深度调峰工况下燃烧优化与机炉协调控制的实现 [J]. 锅炉制造, 2021(4): 25-27, 30. DOI: 10.3969/j.issn.1674-1005.2021.04.009. BAO T J, LIU J P, HOU Z, et al. Realization of combustion optimization and boiler-turbine coordinated control for 440 t/h CFB unit under deep peak shaving condition [J]. Boiler manufacturing, 2021(4): 25-27, 30. DOI: 10.3969/j.issn.1674-1005.2021.04.009. [54] 许振宇, 陈鸿伟, 高建强. 火电厂锅炉主要运行参数的耗差分析 [J]. 热力发电, 2007, 36(2): 16-18,30. DOI: 10.3969/j.issn.1002-3364.2007.02.005. XU Z Y, CHEN H W, GAO J Q. Analysis of consumption deviation for main operation parameters of boilers in thermal power plant [J]. Thermal power generation, 2007, 36(2): 16-18,30. DOI: 10.3969/j.issn.1002-3364.2007.02.005. [55] 杨志良. 浅析火力发电厂锅炉经济运行 [J]. 科技视界, 2013(24): 258. DOI: 10.19694/j.cnki.issn2095-2457.2013.24.200. YANG Z L. Analysis on economic operation of boiler in thermal power plant [J]. Science & technology vision, 2013(24): 258. DOI: 10.19694/j.cnki.issn2095-2457.2013.24.200. [56] 顾先青, 潘卫国, 王文欢, 等. 大型火电机组供电煤耗率比较分析 [J]. 上海电力学院学报, 2009, 25(2): 109-112. DOI: 10.3969/j.issn.1006-4729.2009.02.003. GU X Q, PAN W G, WANG W H, et al. Compative analysis of the net coal consumption rate of coal-fired power generating units [J]. Journal of Shanghai University of Electric Power, 2009, 25(2): 109-112. DOI: 10.3969/j.issn.1006-4729.2009.02.003. [57] 高燕武, 李朋, 张炜, 等. 基于大数据的燃煤机组供电煤耗分析 [J]. 电力与能源, 2020, 41(1): 109-111. GAO Y W, LI P, ZHANG W, et al. Analysis of power supply coal consumption of coal-fired unit based on big data [J]. Power & energy, 2020, 41(1): 109-111. [58] 李鑫鑫. 基于历史寻优的火电机组运行优化研究 [D]. 北京: 华北电力大学, 2017. LI X X. Research on optimal operation of thermal power unit based on the optimal searching method of the historical data [D]. Beijing: North China Electric Power University, 2017. [59] 李霍生. 基于PID实现对锅炉循环泵的智能控制 [J]. 机械管理开发, 2022, 37(5): 227-228. DOI: 10.16525/j.cnki.cn14-1134/th.2022.05.097. LI H S. Intelligent control of boiler circulation pump based on PID [J]. Mechanical management and development, 2022, 37(5): 227-228. DOI: 10.16525/j.cnki.cn14-1134/th.2022.05.097. [60] 胡刚, 刘伟. 300 MW CFB锅炉一次风机耗电率优化研究 [J]. 电力学报, 2021, 36(4): 301-305. DOI: 10.13357/j.dlxb.2021.037. HU G, LIU W. Study on optimization of the power consumption rate of 300 MW CFB boiler primary fan [J]. Journal of electric power, 2021, 36(4): 301-305. DOI: 10.13357/j.dlxb.2021.037. [61] 吴桂林, 田斌斌, 杨国. 高压变频器在锅炉风机节能控制中的应用 [C]//第五届全国石油和化工电气技术大会论文集, 淄博, 2020-09-09. 淄博: 中国机电一体化技术应用协会, 2020: 141-146. WU G L, TIAN B B, YANG G. Application of high voltage inverter in boiler fan energy saving control [C]//Proceedings of the 5th National Petroleum and Chemical Electrical Technology Conference, Zibo, September 9, 2020. Zibo: China Association for the Application of Mechatronics Technology, 2020: 141-146. [62] 华雪莹, 王润芳, 姚为方, 等. 燃煤机组深度调峰环保设备安全运行策略研究 [J]. 能源与节能, 2021(12): 184-186. DOI: 10.16643/j.cnki.14-1360/td.2021.12.069. HUA X Y, WANG R F, YAO W F, et al. Research on safety operation strategy of environmental protection equipment for deep peak load adjustment of coal-fired units [J]. Energy and energy conservation, 2021(12): 184-186. DOI: 10.16643/j.cnki.14-1360/td.2021.12.069. [63] 付忠广, 靳涛, 周丽君, 等. 复杂系统反向建模方法及偏最小二乘法建模应用研究 [J]. 中国电机工程学报, 2009, 29(2): 25-29. DOI: 10.3321/j.issn:0258-8013.2009.02.005. FU Z G, JIN T, ZHOU L J, et al. Research and application of the reversed modeling method and partial least-square regression modeling for the complex thermal system [J]. Proceedings of the CSEE, 2009, 29(2): 25-29. DOI: 10.3321/j.issn:0258-8013.2009.02.005. [64] 吴啸川. 电站锅炉高温受热面管壁温度的反向建模研究 [D]. 北京: 华北电力大学(北京), 2011. WU X C. Research on reverse modeling of tube wall temperature of high-temperature heating surface in power plant boiler [D]. Beijing: North China Electric Power University (Beijing), 2011. [65] 吴斐, 唐必光, 余艳芝, 等. 神经网络在过热器、再热器管壁温度计算中的应用 [J]. 发电设备, 2005, 19(2): 108-111. DOI: 10.3969/j.issn.1671-086X.2005.02.012. WU F, TANG B G, YU Y Z, et al. Application of neural networks in the calculation of seperheater and reheater tube wall temperature [J]. Power equipment, 2005, 19(2): 108-111. DOI: 10.3969/j.issn.1671-086X.2005.02.012. [66] 周云龙, 苏耀雷. 基于神经网络的锅炉过热器和再热器管壁温度预测研究 [J]. 热力发电, 2012, 41(5): 22-26. DOI: 10.3969/j.issn.1002-3364.2012.05.022. ZHOU Y L, SU Y L. Study on predicition of tube-wall temperature in superheater and reheater of boiler based on neural network [J]. Thermal power generation, 2012, 41(5): 22-26. DOI: 10.3969/j.issn.1002-3364.2012.05.022. [67] 卢彬, 刘茜, 高林, 等. 基于NARX神经网络的锅炉壁温预测模型 [J]. 热力发电, 2019, 48(3): 35-40. DOI: 10.19666/j.rlfd.201812214. LU B, LIU X, GAO L, et al. Prediction model of boiler platen superheater tube wall temperature based on NARX neural network [J]. Thermal power generation, 2019, 48(3): 35-40. DOI: 10.19666/j.rlfd.201812214. [68] CHEN Y T, ZHANG D X. Theory-guided deep-learning for electrical load forecasting (TgDLF) via ensemble long short-term memory [J]. Advances in applied energy, 2021, 1: 100004. DOI: 10.1016/j.adapen.2020.100004. [69] 李友志, 蒋蓬勃, 白帆, 等. 基于LSTM的锅炉四管高温再热器超温预测分析 [J]. 无线互联科技, 2019, 16(18): 103-104. DOI: 10.3969/j.issn.1672-6944.2019.18.049. LI Y Z, JIANG P B, BAI F, et al. Analysis on prediction of overtemperature of boiler four-tube high temperature reheater based on LSTM [J]. Wireless internet technology, 2019, 16(18): 103-104. DOI: 10.3969/j.issn.1672-6944.2019.18.049. [70] 金志远, 李胜男, 谭鹏, 等. 基于长短时记忆神经网络的锅炉多参数协同预测模型 [J]. 热力发电, 2021, 50(5): 120-126. DOI: 10.19666/j.rlfd.202007234. JIN Z Y, LI S N, TAN P, et al. Multi-parameter collaborative prediction model of boilers based on long-short-term memory neural network [J]. Thermal power generation, 2021, 50(5): 120-126. DOI: 10.19666/j.rlfd.202007234. [71] 韩驰. 超超临界火电机组炉膛受热面金属壁温预测及监测系统 [D]. 吉林: 东北电力大学, 2020. HAN C. Prediction and monitoring system of metal wall temperature on furnace heating surface of ultra-supercritical thermal power unit [D]. Jilin: Northeast Electric Power University, 2020. [72] 沙骁, 黄骞, 柳冠青, 等. 燃煤锅炉受热面壁温监测数据的时序特征分析 [J]. 燃烧科学与技术, 2021, 27(5): 475-481. DOI: 10.11715/rskxjs.R202108022. SHA X, HUANG Q, LIU G Q, et al. Time series analysis of monitored heating surface wall temperature of coal-fired boiler [J]. Journal of combustion science and technology, 2021, 27(5): 475-481. DOI: 10.11715/rskxjs.R202108022. [73] 祝建飞, 马建华, 杨康, 等. 超临界垂直管圈直流炉壁温偏差及优化控制 [J]. 锅炉技术, 2021, 52(5): 22-26. DOI: 10.3969/j.issn.1672-4763.2021.05.005. ZHU J F, MA J H, YANG K, et al. Wall temperature deviation and optimal control of supercritical vertical tube once through boiler [J]. Boiler technology, 2021, 52(5): 22-26. DOI: 10.3969/j.issn.1672-4763.2021.05.005. [74] ZHANG Q N, SUN F Z, CHEN C X. Research on the three-dimensional wall temperature distribution and low-temperature corrosion of quad-sectional air preheater in larger power plant boilers [J]. International journal of heat and mass transfer, 2019, 128: 739-747. DOI: 10.1016/j.ijheatmasstransfer.2018.09.006. [75] ÖZDEMIR K, SERINCAN M F. A computational fluid dynamics model of a rotary regenerative heat exchanger in a flue gas desulfurization system [J]. Applied thermal engineering, 2018, 143: 988-1002. DOI: 10.1016/j.applthermaleng.2018.08.011. [76] BU Y F, WANG L M, CHEN X, et al. Numerical analysis of ABS deposition and corrosion on a rotary air preheater [J]. Applied thermal engineering, 2018, 131: 669-677. DOI: 10.1016/j.applthermaleng.2017.11.082. [77] LI C, HUANG Q, LIU G Q, et al. In situ visual monitoring of rotary air preheater blockage: setup and image analysis [M]//LYU J F, LI S Q. Clean Coal and Sustainable Energy. Singapore: Springer, 2022. DOI: 10.1007/978-981-16-1657-0_65. [78] 韩院臣. 660 MW超临界机组深度调峰自动控制技术研究 [J]. 电气传动自动化, 2021, 43(6): 30-32, 50. DOI: 10.3969/j.issn.1005-7277.2021.06.008. HAN Y C. Research on automatic control technology of deep peak shaving of 660 MW supercritical unit [J]. Electric drive automation, 2021, 43(6): 30-32, 50. DOI: 10.3969/j.issn.1005-7277.2021.06.008. [79] 高满达, 李庚达, 陈彦桥, 等. 先进检测与5G通信技术在燃煤锅炉运行监测中的应用研究 [J]. 热力发电, 2023, 52(1): 18-25. DOI: 10.19666/j.rlfd.202204061. GAO M D, LI G D, CHEN Y Q, et al. Application of advanced detection and 5G communication technology in coal-fired boiler operation monitoring [J]. Thermal power generation, 2023, 52(1): 18-25. DOI: 10.19666/j.rlfd.202204061. [80] 董泽, 姜炜, 王晓燕, 等. 数字孪生在火电机组数字化转型中的应用 [J]. 系统仿真学报, 2023, 35(6): 1144-1156. DOI: 10.16182/j.issn1004731x.joss.22-0229. DONG Z, JIANG W, WANG X Y, et al. Application of digital twin in digital transformation of thermal power units [J]. Journal of system simulation, 2023, 35(6): 1144-1156. DOI: 10.16182/j.issn1004731x.joss.22-0229. [81] 卢锦玲, 颜禄涵, 腊志源, 等. 基于数字孪生与动态能效模型的综合能源系统实时优化调度策略 [J]. 电网技术, 2023, 47(1): 226-238. DOI: 10.13335/j.1000-3673.pst.2022.0044. LU J L, YAN L H, LA Z Y, et al. Real-time optimal scheduling strategy for integrated energy system based on digital twins and dynamic energy efficiency model [J]. Power system technology, 2023, 47(1): 226-238. DOI: 10.13335/j.1000-3673.pst.2022.0044. [82] 牛百芳, 董功利, 陈文鑫. 基于RFID的锅炉炉膛出口烟气温度智能监测系统 [J]. 电子元器件与信息技术, 2023, 7(6): 76-79. DOI: 10.19772/j.cnki.2096-4455.2023.6.020. NIU B F, DONG G L, CHEN W X. Intelligent monitoring system for boiler furnace outlet flue gas temperature based on RFID [J]. Electronic components and information technology, 2023, 7(6): 76-79. DOI: 10.19772/j.cnki.2096-4455.2023.6.020.