-
不同倾角下度电投资变化情况如表1所示。当倾角在15°~25°变化时,发电量变化较小;由于倾角变化导致的土地面积及支架倾角变化,在 15°~25°时,度电成本16°~20°接近,19°度电成本最优。
表 1 不同倾角下度电投资变化情况表
Table 1. Changes in kWh investment at different angles
倾角/(°) 年等效满负荷
小时/h单位千瓦静态
投资/[元·(kW)−1]度电投资/
[元·(kWh)−1]15 1 470.62 4 081.5 2.768 8 16 1 473.50 4 083.5 2.765 0 17 1 475.80 4 085.5 2.764 8 18 1 477.66 4 087.5 2.764 3 19 1 479.38 4 089.5 2.764 0 20 1 480.40 4 091.5 2.764 2 21 1 481.23 4 093.5 2.764 6 22 1 481.50 4 095.5 2.765 0 23 1 481.52 4 097.5 2.765 7 24 1 481.29 4 099.5 2.766 2 25 1 480.59 4 101.5 2.768 2 1)方案一:固定支架倾角按16°,柔性支架东西向固定倾角按4°,南向及偏南方向顺坡布置。对于固定支架平地的间距根据固定倾角为16°的净距离为2 m,偏南方向最小净距离为1 m,东西坡及偏北坡按遮挡确定组串之间的净距离。对于柔性支架,固定倾角偏南方向、顺坡布置的最小净距离为0.75 m,偏北方向按遮挡因素确定组串之间的净距离。通过对倾角的优化处理,平地及整体偏南区域考虑布置固定支架,边坡区域考虑布置柔性支架。本方案共布置有12个方阵,直流侧装机容量为48.263 04 MWp。
2)方案二:根据最佳倾角确定,固定支架倾角采用24°,柔性支架固定倾角采用19°。对于固定支架平地的间距固定倾角为24°的净距离为2 m,偏南方向最小净距离为1 m,东西坡及偏北坡按遮挡确定组串之间的净距离。对于柔性支架,固定倾角朝南方向、顺坡布置的最小净距离为1 m,偏北方向按遮挡因素确定组串之间的净距离。固定倾角朝东西的间距为2 m, 平地、整体偏南区域及小区域等考虑布置固定支架,有边坡等区域布置柔性支架。本方案共布置有10个方阵,直流侧装机容量为40.219 2 MWp。
-
1)光伏发电系统效率分析
方案一:首年的光伏发电系统效率约为81.30%,系统总效率约为83.73%。
方案二:首年的光伏发电系统效率约为82.96%,系统总效率约为85.44%。
2)发电量及首年利用小时数估算
方案一:直流侧装机容量约为48 MWp,首年发电量约为73.383 GW·h,25 a总发电量约为1 773.493 GW·h,首年利用小时数约为1 528.81 h,25 a年平均利用小时数约为1 444.58 h。
方案二:直流侧装机容量约为40 MWp,首年发电量约为67.080 6 GW·h,25 a总发电量约为1 584.613 3 GW·h,首年利用小时数约为1 560.01 h,25 a年平均利用小时数约为1 474.06 h。
根据现有用地红线范围(46.73 hm2),直流侧装机容量:方案一比方案二增加8 MWp左右;25 a总发电量:方案一比方案二增加10%~15%;发电系统总效率:方案一比方案二减少2%左右。
Optimization of Photovoltaic Power Generation Project Based on Coal Mine Dump
-
摘要:
目的 通过“以光治荒”的方式推进煤矿排土场光伏发电项目的建设,将生态保护与绿色高效能源战略有机融合,以达到良好经济发展和生态环境治理的效果。 方法 以某煤矿排土场光伏发电项目优化为例,原方案采用的全固定支架形式,考虑到红线调整、地质影响、施工进度可控等因素,现调整为固定支架+柔性支架组合方案,场地较平缓部分区域考虑布置固定支架,柔性支架主要设置在坡面与跨沟处,占比为40%~45%。结合固定倾角、发电效率、光伏组串布置间距等因素进行优化,方案一固定支架倾角按16°,柔性支架东西向固定倾角按4°,南向及偏南方向顺坡布置。方案二根据最佳倾角确定,固定支架倾角采用24°,柔性支架固定倾角采用19°。 结果 方案一比方案二增加8 MWp左右;25 a总发电量:方案一比方案二增加10%~15%。发电系统总效率:方案一比方案二减少2%左右。 结论 研究表明本方案的优化保证其装机容量、工程安全等的同时,煤矿排土场边坡布置柔性支架增加了本工程创新性,为后续相关工程起到示范作用。在工程设计优化过程中,不仅仅考虑效率因素,更多的是需关注多目标因素优化带来的经济效益。 Abstract:Introduction To promote the construction of photovoltaic power generation project in coal mine dump based on the concept of "desertification control with a PV project", and organically integrate ecological protection with green and efficient energy strategies to achieve the purpose of sound economic development and ecological environment governance. Method The optimization of photovoltaic power generation project in a coal mine dump was taken as an example, in the original plan, a fully fixed support is used. After taking into account factors such as boundary line change, geological influence, and controllable construction progress, now a combination of fixed supports and flexible supports is adopted. In areas with relatively flat terrain, fixed supports are considered, and the flexible supports are mainly used for slopes and cross ditches (40%~45%) . Optimization is carried out based on factors such as fixed inclination angle, power generation efficiency, and spacing of PV strings. Option 1:The fixed support has an inclination angle of 16°, a flexible support fixed inclination angle of 4° in the east-west direction, and it is arranged on the slope in the south and slightly south directions. Option 2: the fixed support has an optimal inclination angle of 24° and a flexible support inclination angle of 19°. Result The power generation in Option 1 is about 8 MWp higher than that of Option 2, and the total power generation is increased by 10%~15% in 25 years. The total efficiency of the power generation system in Option 1 reduces by about 2% compared to Option 2. Conclusion The study has shown that the project optimization guarantees the installed capacity, safety, etc. At the same time, it's an innovation to arrange flexible supports on the slope of the coal mine dump in this project, so it serves as a model for future projects. In the process of project design optimization, we should not only consider the efficiency, but also pay more attention to the economic benefits brought by multi-objective factor optimization. -
表 1 不同倾角下度电投资变化情况表
Tab. 1. Changes in kWh investment at different angles
倾角/(°) 年等效满负荷
小时/h单位千瓦静态
投资/[元·(kW)−1]度电投资/
[元·(kWh)−1]15 1 470.62 4 081.5 2.768 8 16 1 473.50 4 083.5 2.765 0 17 1 475.80 4 085.5 2.764 8 18 1 477.66 4 087.5 2.764 3 19 1 479.38 4 089.5 2.764 0 20 1 480.40 4 091.5 2.764 2 21 1 481.23 4 093.5 2.764 6 22 1 481.50 4 095.5 2.765 0 23 1 481.52 4 097.5 2.765 7 24 1 481.29 4 099.5 2.766 2 25 1 480.59 4 101.5 2.768 2 -
[1] 邹才能, 薛华庆, 熊波, 等. “碳中和”的内涵、创新与愿景 [J]. 天然气工业, 2021, 41(8): 46-57. DOI: 10.3787/j.issn.1000-0976.2021.08.005. ZOU C N, XUE H Q, XIONG B, et al. Connotation, innovation and vision of "carbon neutral" [J]. Natural gas industry, 2021, 41(8): 46-57. DOI: 10.3787/j.issn.1000-0976.2021.08.005. [2] 邹才能, 潘松圻, 马锋. 碳中和目标下世界能源转型与中国能源人新使命 [J]. 北京石油管理干部学院学报, 2022, 29(3): 22-32. ZOU C N, PAN S Q, MA F. The world energy transition under the carbon neutrality goal and the new mission of Chinese energy people [J]. Journal of Beijing petroleum managers training institute, 2022, 29(3): 22-32. [3] 邹才能, 陈艳鹏, 熊波, 等. 碳中和目标下中国新能源使命 [J]. 中国科学院院刊, 2023, 38(1): 48-58. DOI: 10.16418/j.issn.1000-3045.20220831001. ZOU C N, CHEN Y P, XIONG B, et al. Mission of new energy under carbon neutrality goal in China [J]. Bulletin of Chinese academy of sciences, 2023, 38(1): 48-58. DOI: 10.16418/j.issn.1000-3045.20220831001. [4] 保瑞, 郁华嘉, 朱辉, 等. 某采石场露天边坡稳定性分析及治理 [J]. 采矿技术, 2022, 22(5): 89-92. DOI: 10.13828/j.cnki.ckjs.2022.05.049. BAO R, YU H J, ZHU H, et al. Stability analysis and treatment of open-pit slope in a quarry [J]. Mining technology, 2022, 22(5): 89-92. DOI: 10.13828/j.cnki.ckjs.2022.05.049. [5] 陈光木. 降雨对露天矿软弱基底排土场边坡稳定性的弱化效应 [J]. 矿业研究与开发, 2022, 42(12): 56-62. DOI: 10.13827/j.cnki.kyyk.2022.12.004. CHEN G M. Weakening effect of rainfall on slope stability of dump with weak base [J]. Mining research & development, 2022, 42(12): 56-62. DOI: 10.13827/j.cnki.kyyk.2022.12.004. [6] 王玉海. 矸石场多元化生态修复及环保达标整治研究 [J]. 中国化工贸易, 2021(18): 193-194. WANG Y H. Research on multi-ecological restoration and environmental protection standard regulation of gangue yard [J]. China chemical trade, 2021(18): 193-194. [7] 陈宏贵, 郑海军, 华绍广. 排土场资源综合利用对大气环境的影响研究 [J]. 现代矿业, 2021, 37(12): 29-30,34. DOI: 10.3969/j.issn.1674-6082.2021.12.010. CHEN H G, ZHENG H J, HUA S G. Study on the influence of comprehensive utilization of dump resources on atmospheric environment [J]. Modern mining, 2021, 37(12): 29-30,34. DOI: 10.3969/j.issn.1674-6082.2021.12.010. [8] 李立, 吴林, 文红晏, 等. 大坡度斜坡光伏支架设计应用分析 [J]. 能源与节能, 2021(3): 202-204. DOI: 10.16643/j.cnki.14-1360/td.2021.03.088. LI L, WU L, WEN H Y, et al. Analysis on design and application of photovoltaic support for large slope [J]. Energy and energy conservation, 2021(3): 202-204. DOI: 10.16643/j.cnki.14-1360/td.2021.03.088. [9] 杜航, 徐海巍, 张跃龙, 等. 大跨柔性光伏支架结构风压特性及风振响应 [J]. 哈尔滨工业大学学报, 2022, 54(10): 67-74. DOI: 10.11918/202112064. DU H, XU H W, ZHANG Y L, et al. Wind pressure characteristics and wind vibration response of long-span flexible photovoltaic support structure [J]. Journal of Harbin Institute of Technology, 2022, 54(10): 67-74. DOI: 10.11918/202112064. [10] 杜航. 大跨度柔性光伏支架结构的风致效应及其控制 [D]. 杭州: 浙江大学, 2022. DOI: 10.27461/d.cnki.gzjdx.2022.002733. DU H. Wind-induced effects and control of large-span flexible photovoltaic support structures [D]. Hangzhou: Zhejiang University, 2022. DOI: 10.27461/d.cnki.gzjdx.2022.002733.