• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铀在放射性废物处置场周边土壤中的吸附行为及机理研究

黄君仪 易树平 商建英 郑春苗

黄君仪, 易树平, 商建英, 郑春苗. 铀在放射性废物处置场周边土壤中的吸附行为及机理研究[J]. 南方能源建设, 2018, 5(1): 14-21,13. doi: 10.16516/j.gedi.issn2095-8676.2018.01.002
引用本文: 黄君仪, 易树平, 商建英, 郑春苗. 铀在放射性废物处置场周边土壤中的吸附行为及机理研究[J]. 南方能源建设, 2018, 5(1): 14-21,13. doi: 10.16516/j.gedi.issn2095-8676.2018.01.002
Junyi HUANG, Shuping YI, Jianying SHANG, Chunmiao ZHENG. Behavior and Mechanism of Uranium Adsorption on Soil Medium Nearby Radioactive Waste Disposal Sites[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(1): 14-21,13. doi: 10.16516/j.gedi.issn2095-8676.2018.01.002
Citation: Junyi HUANG, Shuping YI, Jianying SHANG, Chunmiao ZHENG. Behavior and Mechanism of Uranium Adsorption on Soil Medium Nearby Radioactive Waste Disposal Sites[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(1): 14-21,13. doi: 10.16516/j.gedi.issn2095-8676.2018.01.002

铀在放射性废物处置场周边土壤中的吸附行为及机理研究

doi: 10.16516/j.gedi.issn2095-8676.2018.01.002
基金项目: 

深圳市科技计划项目“土壤胶体协同铀的迁移机理和耦合模型研究” JCYJ20150831142213741

深圳市科技计划项目“深圳市土壤与地下水污染防治重点实验室” ZDSY20150831141712549

详细信息
    作者简介:

    黄君仪 1989-,女,广东惠州人,南方科技大学环境科学与工程学院硕士研究生,主要从事土壤与地下水污染机理及修复研究(e-mail)huangjy35@mail2.sysu.edu.cn。

    易树平(通信作者) 1979-,男,四川自贡人,南方科技大学环境科学与工程学院研究副教授,西班牙拉科鲁尼亚大学水文地质博士,主要从事放射性废物的安全处置与核素迁移机理和模拟和土壤地下水污染机理及修复研究(e-mail)yisp@sustc.edu.cn。

    商建英 1977-,女,河北邢台人,中国农业大学资源与环境学院教授,美国华盛顿州立大学土壤学博士,主要从事污染物在土壤和地下水中的迁移过程、土壤和地下水的污染与修复研究(e-mail)jyshang@cau.edu.cn。

    郑春苗 1962-,男,美籍华人,南方科技大学环境科学与工程学院院长、领军教授,美国威斯康星大学麦迪逊分校水文地质博士,主要从事地下水污染物迁移过程与生物地球化学反应的理论及试验研究等(e-mail)zhengcm@sustc.edu.cn。

  • 中图分类号: TL941.21

Behavior and Mechanism of Uranium Adsorption on Soil Medium Nearby Radioactive Waste Disposal Sites

  • 摘要: 放射性核元素在土壤介质中的吸附特征是放射性废物处置场地选址及安全评价中最重要的考虑因素之一。为探讨核素铀在放射性废物处置场预选场址周边土壤介质中的吸附行为与机理,实验以深圳市蛇山顶(SSD)及阳江市大尖山(YJ)表层土壤为研究对象,采用批式实验法研究不同铀初始质量浓度及离子强度对其吸附核素铀行为的影响,并通过吸附动力学模型及吸附等温线模型对实验数据进行拟合,分析吸附机理。结果表明:当铀初始质量浓度增大时,SSD及YJ土壤对U(VI)的平衡吸附量也增大,但去除率则分别从97.07%、91.56%下降至88.55%、87.93%;离子强度对SSD土壤吸附U(VI)的影响并不显著,表明U(VI)在SSD土壤上的吸附可能以内层络合反应为主;准二级动力学方程及Langmuir吸附等温模型能够很好地拟合吸附动力学及平衡吸附实验结果,相关系数R2均在0.99以上。实验获取的这些参数为核素铀在土壤介质上的吸附模型的建立提供了重要依据,且为推测核素铀在环境中的迁移行为提供了研究基础。
  • 图  1  不同初始质量浓度对SSD土壤吸附U(VI)的影响

    Fig.  1  Adsorption of U(VI) on SSD soil under the influence of varied initial concentrations

    图  2  不同初始质量浓度对阳江土壤吸附U(VI)的影响

    Fig.  2  Adsorption of U(VI) on YJ soil under the influence of varied initial concentrations

    图  3  离子强度对SSD土壤吸附U(VI)的影响

    Fig.  3  Adsorption of U(VI) on SSD soil under the influence of varied ionic strengths

    图  4  不同初始质量浓度U(VI)对SSD、YJ土壤吸附的影响

    Fig.  4  U(VI) adsorption on SSD and YJ soils under the influence of varied initial U(VI) concentrations

    图  5  不同初始质量浓度下的U(VI)准二级动力学曲线

    Fig.  5  Pseudo-second-order kinetics curves of U(VI) under different initial uranium concentrations

    图  6  不同离子强度下的U(VI)准二级动力学曲线

    Fig.  6  Pseudo-second-order kinetics curves of U(VI) under different ionic strengths

    图  7  Langmuir吸附等温线对SSD和YJ土壤吸附铀的拟合结果

    Fig.  7  Adsorption isotherms of U(VI) on SSD and YJ soils fitted by Langmuir model

    图  8  Freundlich吸附等温线对SSD和YJ土壤吸附铀的拟合结果

    Fig.  8  Adsorption isotherms of U(VI) on SSD and YJ soils fitted by Freundlich model

    表  1  供试土壤的基本性质

    Tab.  1.   Physicochemical characteristics of the soils %

    土样 OM Al2O3 SiO2 Fe2O3 容重 粘粒 含水率
    YJ 2.50 22.22 60.86 1.84 1.31 8.97 26.24
    SSD 4.26 20.79 55.45 9.73 1.33 5.86 26.17

    注:YJ代表阳江土壤,SSD表示深圳土壤,OM表示有机质,含水率为干基含水率。

    下载: 导出CSV

    表  2  吸附平衡后不同初始质量浓度土壤对U(VI)的吸附量

    Tab.  2.   The adsorption capacity of U(VI) on soils at equilibrium time in different initial concentrations

    Soil SSD YJ
    U(VI)/ (mg·L-1) qe /(mg·g-1) η /% qe /(mg·g-1) η/%
    1 0.020 0 99.916 0.020 0 99.946
    3 0.060 0 99.924 0.060 0 99.952
    5 0.099 8 99.844 0.099 9 99.900
    8 0.159 6 99.730 0.159 6 99.772
    10 0.199 2 99.615 0.199 5 99.735
    下载: 导出CSV

    表  3  不同初始质量浓度时准二级动力学模型拟合参数表

    Tab.  3.   Kinetic parameters for uranium adsorption on soils in different uranium concentrations

    Soil U(VI) / (mg·L-1) R2 K /(g·mg-1·h-1) qe(cal)/ (mg·g-1) qe(exp) / (mg·g-1)
    SSD 5.00 0.999 9 96.305 0.097 0 0.097 8
    10.00 0.999 7 24.045 0.177 6 0.179 6
    YJ 5.00 0.999 9 19.212 0.093 0 0.092 9
    10.00 1.000 0 27.949 0.175 1 0.176 5

    注:qe(cal)为动力学方程计算值;qe(exp)为实验值。

    下载: 导出CSV

    表  4  不同离子强度时准二级动力学模型拟合参数表

    Tab.  4.   Kinetic parameters for uranium adsorption on soils under different ionic strengths

    Soil IS /(mg·L-1) R2 K /(g· mg-1·h-1) qe(cal)/ (mg·g-1) qe(exp) / (mg·g-1)
    SSD 1 1.000 0 33.960 0.099 1 0.098 1
    50 0.999 9 96.305 0.097 0 0.097 1
    1000 1.000 0 162.999 0.095 2 0.095 1
    下载: 导出CSV

    表  5  不同土样吸附铀的Langmuir和Freundlich吸附等温方程参数

    Tab.  5.   Langmuir and Freundlich isotherm parameters of uranium adsorption on soils

    Model Soil R2 Qm /(mg·g-1) B /(L·mg-1)
    Langmuir SSD 0.987 2 0.270 4 7.096 2
    Model YJ 0.985 7 0.259 5 10.722 2
    下载: 导出CSV
  • [1] 李兴亮,宋强,刘碧君,等. 炭材料对铀的吸附 [J]. 化学进展,2011,23(7): 1446-1453.

    LI X L, SONG Q, LIU B J,et al. Adsorption of uranium by carbon materials from aqueous solutions [J]. Progress in Chemistry,2011,23(7): 1446-1453.
    [2] MILLER A C, STEWART M, BROOKS K,et al. Depleted uranium-catalyzed oxidative DNA damage:absence of significant alpha particle decay [J]. Journal of Inorganic Biochemistry,2002,91(1): 246-252.
    [3] NEDELKOVA M, MERROUN M L, ROSSBERG A,et al. Microbacterium isolates from the vicinity of a radioactive waste depository and their interactions with uranium [J]. FEMS Microbiology Ecology,2007,59(3): 694-705.
    [4] 鲁如坤. 土壤农业化学分析方法 [M]. 北京:中国农业科技出版社,1999:46-50.

    LU R K. Soil agrochemistry analysis methods [M]. Beijing:China Agriculture Science Press,1999:46-50.
    [5] 潘多强. U(VI)、Th(IV)和Eu(III)在花岗岩组分矿物及膨润土上的吸附行为研究 [D]. 兰州:兰州大学,2014:13-39.

    PAN D Q. Sorption of U(VI),Th(IV)and Eu(III) on mineralogical components of granite and bentonite [D]. Lanzhou:Lanzhou University,2014:13-39.
    [6] REDDAD Z, GERENTE C, ANDRES Y,et al. Adsorption of several metal ions onto a low-cost biosorbent:Kinetic and equilibrium studies [J]. Environmental Science and Technology,2002,36(9): 2067-2073.
    [7] WU W S, HE Y D, LI M H,et al. Characterization of GMZ bentonite and its application in the adsorption of Pb(II)from aqueous solutions [J]. Apply Clay Science,2009,43(2): 164-171.
    [8] 王晓丽. U(VI)和Th(IV)在高岭土上的吸附行为研究 [D]. 绵阳:中国工程物理研究院,2016:27-37.

    WANG X L. Sorption of U(VI)and Th(IV) on kaolinite [D]. Mianyang:China Academy of Engineering Physics,2016:27-37.
    [9] 胡军,周跃明,梁喜珍,等. 纳米氧化铁对铀V(VI)吸附性能的研究 [J]. 光谱实验室,2011,28(2): 718-722.

    HU J, ZHOU Y M, LIANG X Z,et al. Study on the adsorption of uranium(VI) on ferric oxide nanoparticles [J]. Chinese Journal of Spectroscopy Laboratory,2011,28(2): 718-722.
    [10] ABOLLION O, GIACOMINO A, MALANDRINO M,et al. Interaction of metal ions with montmorillonite and vermiculite [J]. Applied Clay Science,2008,38(3-4): 27-236.
    [11] REN X M, WANG S W, YANG S T,et al. Influence of contact time,pH,soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite [J]. Journal of Radioanalytical and Nuclear Chemistry,2010,283(1): 253-259.
    [12] 王所伟,李家星,陈磊,等. Th(VI)在高庙子膨润土上的吸附行为 [J]. 核化学与放射化学,2010,32(2): 106-110.

    WANG S W, LI J X, CHEN L,et al. Sorption of Th(VI)on GMZ Bentonite [J]. Journal of Nuclear and Radiochemistry,2010,32(2): 106-110.
    [13] BAEYENS B, BRADBURY M H. A mechanistic description of Ni and Zn sorption on Na-montmorillonite part I:titration adsorption measurements[J]. Journal of Contaminant Hydrology, 1997,27(3-4): 199-222.
    [14] WANG X K, CHEN C L, DU J Z,et al. Effect of pH and aging time on the kinetic dissociation of 243AM(III) from humic acid-coated γ-Al2O3:A chelating resin exchange study [J]. Environmental Science and Technology,2005,39(18): 7084-7088.
    [15] FAN Q H, SHAO D D, LU Y,et al. Effect of pH,ionic strength,temperature and humic substances on the sorption of Ni(II) to Na-attapulgite [J]. Chemical Engineering Journal,2009,150(1): 188-195.
    [16] 郭治军,陈宗元,吴王锁,等. Eu(III)在北山花岗岩上的吸附作用 [J]. 中国科学:化学,2011,41(5): 907-913.

    GUO Z J, CHEN Z Y, WU W S,et al. The adsorption of Eu(III) on Beishan granite [J]. Science China:Chemistry,2011,41(5): 907-913.
    [17] HO Y S. Second-order kinetic model for the sorption of cadmium onto tree fern:a comparison of linear and non-linear methods [J]. Water Research,2006,40(1): 119-125.
    [18] HO Y S, MCKAY G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat [J]. Water Research,2000,34(3): 735-742.
    [19] 彭国文. 新型功能化吸附剂的制备及其吸附铀的试验研究 [D]. 长沙:中南大学,2014:37-39.

    PENG G W. Preparation of novel functional adsorbents and studies on uranium adsorption experiment [D]. Changsha:Central South University,2014:37-39.
    [20] AZIZIAN S. Kinetic models of sorption:a theoretical analysis [J]. Journal of Colloid and Interface Science,2004,276(1): 47-52.
    [21] 刘娟. 凹凸棒石对铀污染土壤的原位钝化实验研究 [D]. 广州:广州大学,2012:24-25.

    LIU J. The experimental study on in situ remediation of U-contaminated soils with attapulgite [D]. Guangzhou:Guangzhou University,2012:24-25.
    [22] CHANG M Y, JUANG R S. Adsorption of tannic acid,humic acid,and dyes from water using the composite of chitosan and activated clay [J]. Journal of Colloid and Interface Science, 2004,278(1): 18-25.
    [23] ZHANG Y S, LIU W, ZHANG L,et al. Application of bifunctional saccharomyces cerevisiae to remove lead(II)and cadmium(II)in aqueous solution [J]. Applied surface science,2011,23(257): 9809-9816.
    [24] FREUNDLICH H. Kapillarchemie:eine darstellung der chemie der kolloide und verwandter gebiete [M]. Nabu Press,2010:32-38.
    [25] MELLAH A, CHEGROUCHE S, BARKAT M. The removal of uranium(VI)from aqueous solutions onto activated carbon:kinetic and thermodynamic investigations [J]. Journal of Colloid and Interface Science,2006,296(2): 434-441.
    [26] 傅献彩,沈文霞,姚天扬,等. 物理化学 [M]. 北京:高等教育出版社,1994:66-68.

    FU C X, SHEN W X, YAO T Y,et al. Physical chemistry [M]. Beijing:Higher Education Press,1994:66-68.
    [27] GUPTA S S, BHATTACHARYYA K G.Kinetic of adsorption of metal ions on inorganic materials:a review [J]. Advances in Colloid and Interface Science,2011,162(1/2): 39-58.
  • [1] 孙潇, 蔡春荣, 罗志斌, 王小博, 朱光涛, 裴爱国.  Highview Power液化空气储能中试装置热力学分析 . 南方能源建设, 2024, 11(2): 112-124. doi: 10.16516/j.ceec.2024.2.11
    [2] 陈珂, 张力, 廖侃.  浅析海上风电灌浆连接段力学研究发展及趋势 . 南方能源建设, 2023, 10(1): 57-63. doi: 10.16516/j.gedi.issn2095-8676.2023.01.007
    [3] 王诗超, 刘嘉畅, 刘展志.  基于高斯混合聚类的海上风电出力特征曲线提取方法及其在电量平衡计算中的应用 . 南方能源建设, 2023, 10(1): 39-47. doi: 10.16516/j.gedi.issn2095-8676.2023.01.005
    [4] 刘森林, 王忠, 陈其春, 周光炳, 王晓, 孙镝.  基于响应面方法的H级燃机基础动力性能研究 . 南方能源建设, 2021, 8(2): 17-24. doi: 10.16516/j.gedi.issn2095-8676.2021.02.003
    [5] 郑幸, 陈逸鹏, 齐冬辉.  输电线路三相不平衡电流及高抗过补偿仿真分析 . 南方能源建设, 2021, 8(2): 78-84. doi: 10.16516/j.gedi.issn2095-8676.2021.02.012
    [6] 李心, 许粲羚, 纪培栋, 肖刚, 章涵, 金建祥.  塔式光热电站集热场设计综述及经济性研究 . 南方能源建设, 2020, 7(2): 51-59. doi: 10.16516/j.gedi.issn2095-8676.2020.02.008
    [7] 周林, 施伟, 张松浩, 张礼贤.  破碎波作用下单桩式海上风机水动力学数值分析 . 南方能源建设, 2020, 7(3): 70-80. doi: 10.16516/j.gedi.issn2095-8676.2020.03.009
    [8] 贾斌, 周倩.  脱硫废水引入自平衡渣水系统的物理模型研究 . 南方能源建设, 2018, 5(3): 106-110. doi: 10.16516/j.gedi.issn2095-8676.2018.03.017
    [9] 胡传鹏.  厂房零米设备基础简化动力计算适用性研究 . 南方能源建设, 2018, 5(S1): 133-139. doi: 10.16516/j.gedi.issn2095-8676.2018.S1.024
    [10] 施伟, 郑侃, 任年鑫.  南海海况下半潜浮式风机在故障工况下的动力学响应分析 . 南方能源建设, 2018, 5(4): 12-20. doi: 10.16516/j.gedi.issn2095-8676.2018.04.002
    [11] 黄小卫, 肖波, 丁金伟, 张维佳.  海底电缆检测中ROV与非动力定位平台自适应匹配 . 南方能源建设, 2017, 4(2): 126-131. doi: 10.16516/j.gedi.issn2095-8676.2017.02.023
    [12] 汪华安, 丁金伟, 郑文棠, 易树平, 刘伟.  北港河重金属污染底泥处置研究 . 南方能源建设, 2017, 4(2): 95-101. doi: 10.16516/j.gedi.issn2095-8676.2017.02.017
    [13] 严沧生.  一种干燥后沥青固化处理放射性废树脂的方法 . 南方能源建设, 2017, 4(1): 102-104,108. doi: 10.16516/j.gedi.issn2095-8676.2017.01.019
    [14] 郑文棠, 石崇.  汉佛德核废料处置场岩体原位试验和数值仿真 . 南方能源建设, 2016, 3(3): 73-78,95. doi: 10.16516/j.gedi.issn2095-8676.2016.03.016
    [15] 王荣鹏, 王干军, 吴毅江.  侧向横风作用下角钢输电塔的动力响应研究 . 南方能源建设, 2015, 2(1): 88-91. doi: 10.16516/j.gedi.issn2095-8676.2015.01.017
    [16] 梁双, 朱宁.  间歇式电源参与电力平衡的研究与建议 . 南方能源建设, 2015, 2(4): 34-36. doi: 10.16516/j.gedi.issn2095-8676.2015.04.004
    [17] 张灿亨, 王鑫, 郑文棠.  基于水动力学模型的暴雨浅层滑坡风险分析 . 南方能源建设, 2015, 2(S1): 198-202. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.044
    [18] 李元, 林建中, 汤东升, 李俊峰.  沉淀絮凝—吸附处理放射性废水的模拟实验 . 南方能源建设, 2015, 2(4): 81-87. doi: 10.16516/j.gedi.issn2095-8676.2015.04.014
    [19] 郑文棠, 程小久.  我国低中放废物处置相关问题研究 . 南方能源建设, 2014, 1(1): 75-82. doi: 10.16516/j.gedi.issn2095-8676.2014.01.014
    [20] 李元, 林建中, 汤东升.  内陆AP1000放射性废液处理工艺改进分析 . 南方能源建设, 2014, 1(1): 66-69. doi: 10.16516/j.gedi.issn2095-8676.2014.01.012
  • 加载中
图(8) / 表 (5)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  120
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-14
  • 修回日期:  2018-01-30
  • 刊出日期:  2018-03-25

铀在放射性废物处置场周边土壤中的吸附行为及机理研究

doi: 10.16516/j.gedi.issn2095-8676.2018.01.002
    基金项目:

    深圳市科技计划项目“土壤胶体协同铀的迁移机理和耦合模型研究” JCYJ20150831142213741

    深圳市科技计划项目“深圳市土壤与地下水污染防治重点实验室” ZDSY20150831141712549

    作者简介:

    黄君仪 1989-,女,广东惠州人,南方科技大学环境科学与工程学院硕士研究生,主要从事土壤与地下水污染机理及修复研究(e-mail)huangjy35@mail2.sysu.edu.cn。

    易树平(通信作者) 1979-,男,四川自贡人,南方科技大学环境科学与工程学院研究副教授,西班牙拉科鲁尼亚大学水文地质博士,主要从事放射性废物的安全处置与核素迁移机理和模拟和土壤地下水污染机理及修复研究(e-mail)yisp@sustc.edu.cn。

    商建英 1977-,女,河北邢台人,中国农业大学资源与环境学院教授,美国华盛顿州立大学土壤学博士,主要从事污染物在土壤和地下水中的迁移过程、土壤和地下水的污染与修复研究(e-mail)jyshang@cau.edu.cn。

    郑春苗 1962-,男,美籍华人,南方科技大学环境科学与工程学院院长、领军教授,美国威斯康星大学麦迪逊分校水文地质博士,主要从事地下水污染物迁移过程与生物地球化学反应的理论及试验研究等(e-mail)zhengcm@sustc.edu.cn。

  • 中图分类号: TL941.21

摘要: 放射性核元素在土壤介质中的吸附特征是放射性废物处置场地选址及安全评价中最重要的考虑因素之一。为探讨核素铀在放射性废物处置场预选场址周边土壤介质中的吸附行为与机理,实验以深圳市蛇山顶(SSD)及阳江市大尖山(YJ)表层土壤为研究对象,采用批式实验法研究不同铀初始质量浓度及离子强度对其吸附核素铀行为的影响,并通过吸附动力学模型及吸附等温线模型对实验数据进行拟合,分析吸附机理。结果表明:当铀初始质量浓度增大时,SSD及YJ土壤对U(VI)的平衡吸附量也增大,但去除率则分别从97.07%、91.56%下降至88.55%、87.93%;离子强度对SSD土壤吸附U(VI)的影响并不显著,表明U(VI)在SSD土壤上的吸附可能以内层络合反应为主;准二级动力学方程及Langmuir吸附等温模型能够很好地拟合吸附动力学及平衡吸附实验结果,相关系数R2均在0.99以上。实验获取的这些参数为核素铀在土壤介质上的吸附模型的建立提供了重要依据,且为推测核素铀在环境中的迁移行为提供了研究基础。

English Abstract

黄君仪, 易树平, 商建英, 郑春苗. 铀在放射性废物处置场周边土壤中的吸附行为及机理研究[J]. 南方能源建设, 2018, 5(1): 14-21,13. doi: 10.16516/j.gedi.issn2095-8676.2018.01.002
引用本文: 黄君仪, 易树平, 商建英, 郑春苗. 铀在放射性废物处置场周边土壤中的吸附行为及机理研究[J]. 南方能源建设, 2018, 5(1): 14-21,13. doi: 10.16516/j.gedi.issn2095-8676.2018.01.002
Junyi HUANG, Shuping YI, Jianying SHANG, Chunmiao ZHENG. Behavior and Mechanism of Uranium Adsorption on Soil Medium Nearby Radioactive Waste Disposal Sites[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(1): 14-21,13. doi: 10.16516/j.gedi.issn2095-8676.2018.01.002
Citation: Junyi HUANG, Shuping YI, Jianying SHANG, Chunmiao ZHENG. Behavior and Mechanism of Uranium Adsorption on Soil Medium Nearby Radioactive Waste Disposal Sites[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(1): 14-21,13. doi: 10.16516/j.gedi.issn2095-8676.2018.01.002
  • 随着我国核电事业的发展,核电厂运行产生的放射性废物问题越来越突出,已渐渐成为国家和地区谋求可持续发展的重要瓶颈之一。同时,伴随着2011年日本福岛第一核电站1号反应堆所在建筑物爆炸引发的核泄漏事故,放射性废物的安全处置愈来愈受到重视。当前,放射性废物的处置方式主要通过多重屏障系统的地质处置,即近地表处置和深层地质处置两种处置方式。无论采用哪种处置方式,其目的都是为了延缓和阻滞放射性核素的迁移与扩散,使之与生物圈有效隔离。

    锕系元素中的核素铀是核燃料的主要成分,同时也是乏燃料后处理的关键核素之一[1]。在环境中核素铀的主要价态为U(IV),U(V)和U(VI),其中U(VI)最稳定,毒性也最强。U(VI)对生物体的危害主要通过化学损伤[2]产生毒性,并且能够介入动物体细胞中的特定代谢途径[3],从而引发生动物体肝脏损伤,甚至致畸致癌。

    在低中放和高放废物地质处置中,核元素的吸附和迁移行为是设计多重屏障、废物处置场地及地下实验室过程中需要重点考虑的因素,而核元素在各种介质上的迁移速率与吸附速率密切相关。因此,开展放射性核素铀在放射性废物处置场预选场址周边土壤介质中的吸附行为和机理研究,不仅能够为处置场的选址、设计、安全评价及迁移模型的构建提供理论依据和技术支撑,而且对未来处置库建造时回填材料的选用、核泄漏事故应急修复及铀尾矿的污染治理具有重要指导意义。

    • 梅特勒LE438 pH计,梅特勒EL104电子天平,普天HY-5回旋振荡器,精骐VM-01U涡旋混匀器,Rigaku Smartlab X射线粉末衍射仪(XRD),马尔文2000型激光粒度仪(Mastersizer),布鲁克S2型X射线荧光光谱仪(XRF),安捷伦7700电感耦合等离子质谱仪(ICP-MS)。

    • 硝酸铀酰(化学式UO2(NO3)2·6H2O),化学纯,购于湖北楚盛威化工有限公司。硝酸钠,分析纯,购于国药集团化学试剂有限公司。实验用水为超纯水,由PALL Cascada 2.1型超纯水机制备。

    • 土壤采自深圳市大鹏新区大鹏街道岭澳村的蛇山顶(114°35′E,22°39′N,靠近北龙低中放废物处置场)及阳江市阳东县东平镇的大尖山(112°01′E,21°50′N,靠近拟建的阳江核电站放射性废物处置场),表层土壤层20~40 cm。将土样在室温下自然晾干,剔除树根,过2 mm标准筛备用。注意不要研磨样品,否则会破坏土壤矿物晶体,从而改变土壤对核素铀的吸附性能。土壤基本性质如表1所示,测定方法参考文献[4]

      表 1  供试土壤的基本性质

      Table 1.  Physicochemical characteristics of the soils %

      土样 OM Al2O3 SiO2 Fe2O3 容重 粘粒 含水率
      YJ 2.50 22.22 60.86 1.84 1.31 8.97 26.24
      SSD 4.26 20.79 55.45 9.73 1.33 5.86 26.17
    • 准确称取一定量的UO2(NO3)2·6H2O于烧杯中溶解,用玻璃棒搅拌均匀,转入容量瓶中,加水稀释至刻度,摇匀,配制成500 mg/L的铀标准溶液。后续实验时再将铀标准溶液稀释至所需质量浓度,并加入NaNO3溶液,溶液调至实验所需的离子强度。

    • 分别称取1.00 g SSD及YJ土壤样品放入50 mL离心管中,按固液比50 g/L,取配制好的硝酸铀酰溶液与相应的土壤样品充分混合均匀,置于回旋振荡器上,开始进行计时实验。设置溶液中U(VI)的初始质量浓度为5.00 mg/L和10.00 mg/L,离子强度为50 mmol/L,选用SSD土壤和YJ土壤作为吸附介质,探究铀的初始质量浓度如何影响吸附过程。实验中设置的铀初始质量浓度为5.00 mg/L,离子强度分别为1.00 mmol/L、50.00 mmol/L、1.00 mol/L,选用SSD土壤作为吸附介质,探讨溶液离子强度对吸附过程的影响。按照预设的采样时间取出相应的离心管样品,离心,取上层清液,用0.22 μm水系滤膜进行过滤,取滤液1 mL,加4 mL 2%的硝酸稀释至5 mL,用ICP-MS测定核素铀在溶液中的质量浓度。U(VI)在土壤上的吸附百分数计算式为:

      ((1))

      式中:θ为土壤对U(VI)的吸附百分数;C0为U(VI)的初始质量浓度,mg·L-1Ce为离心分离后上清液中U(VI)的质量浓度,mg·L-1

    • 分别称取0.20 g SSD及YJ土壤样品放入15 mL离心管中,按固液比50 g/L,取配制好的硝酸铀酰溶液(初始质量浓度从1.00 ~10.00 mg/L)与土壤样品混合均匀,置于回旋振荡器上,开始进行计时实验。样品振荡结束后,离心并取上层清液,用0.22 μm水系滤膜进行过滤,取滤液1 mL,加4 mL 2%的硝酸稀释至5 mL,用ICP-MS测定核素铀在溶液中的质量浓度。U(VI)在土壤上吸附量的计算式为:

      ((2))

      式中:qe为平衡时吸附在土壤上的铀的质量浓度,mg·g-1C0为U(VI)的初始质量浓度,mg·L-1Ce为平衡时溶液中U(VI)的质量浓度,mg·L-1V为铀溶液的体积,mL;M为土壤的质量,g。

    • 在溶液离子强度为50.00 mmol/L时,不同铀初始质量浓度对SSD和YJ土壤吸附U(VI)的影响分别如图1图2所示。

      图  1  不同初始质量浓度对SSD土壤吸附U(VI)的影响

      Figure 1.  Adsorption of U(VI) on SSD soil under the influence of varied initial concentrations

      图  2  不同初始质量浓度对阳江土壤吸附U(VI)的影响

      Figure 2.  Adsorption of U(VI) on YJ soil under the influence of varied initial concentrations

      图1可以看出,在不同初始U(VI)质量浓度下,SSD土壤对铀的吸附动力学特征既有区别,又有相似之处。总体来说,铀的吸附动力学分为三个阶段,即快速吸附阶段(1~24 h),较缓吸附阶段(24~96 h)及极慢吸附阶段(96~480 h)。随着U(VI)初始质量浓度的增加,SSD土壤对U(VI)的吸附量也相应增加,但对U(VI)的去除率随之降低。当铀初始质量浓度分别为5.00 mg/L和10.00 mg/L时,最大U(VI)吸附量和去除率分别在168 h和96 h获得,分别为0.098 mg/g、97.76%和0.181 mg/g、90.73%。在初始质量浓度为5.00 mg/L时,U(VI)的去除率始终大于90%,显示了SSD土壤介质对于去除低质量浓度的U(VI)效果显著。

      图2中,铀的不同初始质量浓度下,YJ土壤对铀的吸附动力学特征与SSD土壤对铀的吸附动力学特征既有相似,又有区别之处。总体来说,铀的吸附动力学也可分为三个阶段,即快速吸附阶段(24 h内)、较缓吸附阶段(24~48 h)和极慢吸附阶段(48~480 h)。随着U(VI)初始质量浓度的增加,YJ土壤对U(VI)的吸附量也相应增加,但对U(VI)的去除率在下降。在铀初始质量浓度分别为5.00 mg/L和10.00 mg/L时,最大U(VI)吸附量和去除率也分别在168 h和96 h获得,分别为0.094 mg/g、94.10%和0.177 mg/g、88.27%。在初始质量浓度为5.00 mg/L下,U(VI)去除率大于75%,显示了YJ土壤对于去除低质量浓度的U(VI)效果良好。

      在吸附初始阶段,SSD和YJ土壤介质表面含有大量的活性吸附位点,但随着时间的推移,两种土壤介质表面可供吸附的位点都在渐渐减少,空间位阻的产生使得 的吸附越来越困,最终使得 在土壤上的吸附量和解吸量趋于平衡。两种土壤介质吸附U(VI)的去除率随着铀初始质量浓度的升高而下降,这是由于投加的土壤量是一定的,即土壤表面吸附位点数量是一定的,但随着溶液中 离子浓度的增加,土壤表面无法提供更多的吸附位点,因此对 的吸附效果减弱,吸附率也会下降。此外, 在较高浓度时更容易发生水解,这就使得能够被土壤吸附的 减少,吸附效果因此会比在低浓度时要差。一定量的土壤,所能够吸附的 浓度范围是有限的,在此范围内,土壤能充分进行吸附反应,最大限度地去除

    • 在溶液U(VI)初始质量浓度为5.00 mg/L,pH=4.77时,不同离子强度对SSD土壤吸附U(VI)的影响实验结果如图3所示。由图3可以看出,不同离子强度下,铀的吸附动力学过程大体上均可分成两个阶段,即快速吸附阶段(24 h内)和极慢吸附阶段(24~480 h)。当背景电解质NaNO3的质量浓度由0.001 mol/L增加至1.00 mol/L时,U(VI)去除率和吸附量都在下降,在吸附的2 h内下降的趋势稍大,而2 h后下降的趋势则呈轻微下降趋势。平衡时SSD土壤对U(VI)的吸附率由98.11%下降至95.08%,吸附量从0.098 mg/g下降至0.095 mg/g,即离子强度增大1 000倍,SSD土壤对U(VI)的吸附率和吸附量仅分别降低约3 %和0.003 mg/g,表明离子强度对U(VI)在SSD土壤上的吸附影响并不显著。

      图  3  离子强度对SSD土壤吸附U(VI)的影响

      Figure 3.  Adsorption of U(VI) on SSD soil under the influence of varied ionic strengths

      离子强度作为溶液的一个重要参数,会对溶液中的金属离子的活度以及形态产生影响[5,6,7]。离子强度对吸附的抑制作用在吸附2 h内稍明显,可能是由于当溶液中的离子强度增大时,电解质离子NO 会与铀酰离子之间形成稳定可溶且不易被矿物吸附的配合物,从而使得铀酰离子的活性减弱[8]。同时,浓度增加的离子Na会和铀酰离子之间的竞争吸附作用加强,这种情况在对金属亲和力较低的矿物平面位点上更加明显[9,10]。除此之外,溶液中离子强度的变化会对土壤表面电势和U(VI)的活度系数产生影响,进而影响吸附过程[11,12]。因此,溶液离子强度的增加,会使得SSD土壤对U(VI)的吸附能力下降,这种现象在吸附过程的2 h内较为明显。

      放射性核素在矿物表面的吸附反应可以通过两种方式实现[5],一种途径是通过与矿物层之间的永久电荷位点发生离子交换反应,另一种则是与矿物层边的可变电荷位点发生表面络合反应(包括外层络合反应和内层络合反应)。因此矿物对核元素的吸附是否受到离子强度的影响,很大程度上取决于矿物自身是否带有永久电荷。一般而言[5,13,14,15,16],离子强度会对离子交换反应和外层络合反应(即吸附质与吸附剂之间形成外层配合物)产生显著影响,但对内层络合反应(内层配合物)则影响很小。总体而言,图4实验结果显示了离子强度对SSD土壤吸附U(VI)有一定影响,说明U(VI)在SSD土壤上的吸附过程中同时发生了内层络合、外层络合和离子交换反应,但以内层络合反应为主,且内层配合物的形成主要通过铀酰离子与土壤介质边缘对铀酰离子高度亲和力的官能团结合,这很可能与吸附质U(VI)不能到达SSD土壤介质内夹层位点有关[8]

      图  4  不同初始质量浓度U(VI)对SSD、YJ土壤吸附的影响

      Figure 4.  U(VI) adsorption on SSD and YJ soils under the influence of varied initial U(VI) concentrations

    • 在溶液pH=4.77时,不同铀初始质量浓度对U(VI)在SSD和YJ土壤上的平衡吸附实验结果如图4表2所示。从图4表2可以看出,不同初始质量浓度下,SSD和YJ两种土壤对铀的吸附量都很接近。随着溶液中U(VI)初始质量浓度的增大,平衡吸附量逐渐增大,吸附百分数在减小,当溶液中U(VI)初始质量浓度由1.00 mg/L增大至10.00 mg/L时,SSD和YJ土壤对铀的吸附量分别由0.020 0 mg/g、0.020 0 mg/g增加至0.199 2 mg/g和0.199 5 mg/g,吸附百分数分别由99.916%、99.946%减小至99.615%、99.735%。这是由于当SSD和YJ土壤剂量恒定时,其吸附点位也是恒定的,即最大吸附能力是固定的。当溶液中U(VI)初始质量浓度逐渐增大时,土壤的投加量却没有增加,即U(VI)与土壤吸附位点的相对比值不断增加,从而导致去除率下降。

      表 2  吸附平衡后不同初始质量浓度土壤对U(VI)的吸附量

      Table 2.  The adsorption capacity of U(VI) on soils at equilibrium time in different initial concentrations

      Soil SSD YJ
      U(VI)/ (mg·L-1) qe /(mg·g-1) η /% qe /(mg·g-1) η/%
      1 0.020 0 99.916 0.020 0 99.946
      3 0.060 0 99.924 0.060 0 99.952
      5 0.099 8 99.844 0.099 9 99.900
      8 0.159 6 99.730 0.159 6 99.772
      10 0.199 2 99.615 0.199 5 99.735
    • 在描述吸附过程时,吸附速率是重要参数之一。动力学模型常用于吸附反应动力学的研究,可以确定吸附过程的速控步骤及反应速率常数。为了研究SSD和YJ土壤吸附U(VI)的动力学特征,更好地揭示吸附规律,将不同实验条件下(铀初始质量浓度,离子强度)获取的土壤介质吸附U(VI)的动力学数据通过准二级动力学模型进行拟合。准二阶反应动力学模型[17,18]公式如式(3)所示:

      ((3))

      式中:t为反应时间,h;qe为平衡吸附量,mg·g-1qtt时刻固体上的吸附量,mg·g-1k2为准二阶级动力学吸附速率常数,g·mg-1·h-1

      准二级动力学方程主要用于描述吸附剂吸附位点被吸附质占有的速率与未被吸附质占据的吸附位点的数量的平方之间的比例关系[19]。通过t/qt对t作图,根据所得的斜率和截距即可求得该实验条件下的动力学常数k2(g·mg-1·h-1)和平衡吸附量qe(mg·g-1)。不同条件下的拟合结果分别如图5图6表3表4所示。

      图  5  不同初始质量浓度下的U(VI)准二级动力学曲线

      Figure 5.  Pseudo-second-order kinetics curves of U(VI) under different initial uranium concentrations

      图  6  不同离子强度下的U(VI)准二级动力学曲线

      Figure 6.  Pseudo-second-order kinetics curves of U(VI) under different ionic strengths

      表 3  不同初始质量浓度时准二级动力学模型拟合参数表

      Table 3.  Kinetic parameters for uranium adsorption on soils in different uranium concentrations

      Soil U(VI) / (mg·L-1) R2 K /(g·mg-1·h-1) qe(cal)/ (mg·g-1) qe(exp) / (mg·g-1)
      SSD 5.00 0.999 9 96.305 0.097 0 0.097 8
      10.00 0.999 7 24.045 0.177 6 0.179 6
      YJ 5.00 0.999 9 19.212 0.093 0 0.092 9
      10.00 1.000 0 27.949 0.175 1 0.176 5

      表 4  不同离子强度时准二级动力学模型拟合参数表

      Table 4.  Kinetic parameters for uranium adsorption on soils under different ionic strengths

      Soil IS /(mg·L-1) R2 K /(g· mg-1·h-1) qe(cal)/ (mg·g-1) qe(exp) / (mg·g-1)
      SSD 1 1.000 0 33.960 0.099 1 0.098 1
      50 0.999 9 96.305 0.097 0 0.097 1
      1000 1.000 0 162.999 0.095 2 0.095 1

      表3表4可知,在不同实验条件下,采用准二级动力学方程拟合的线性相关系数R2均非常接近或等于1,而且计算得到的平衡吸附量qe(cal)与实验所测得的平衡吸附量qe(exp)值很接近,说明假二级动力学模型可以很好地描述不同条件下U(VI)在SSD和YJ土壤介质上的吸附动力学过程,土壤对U(VI)的吸附过程为化学吸附。

      Azizian等[20]认为,相比于假一级动力学方程,假二级动力学方程能更好地描述当溶液中吸附质的初始质量浓度较低时的吸附过程,而假一级动力学方程则更适合用于描述当溶液中所含的吸附质浓度较高时的吸附过程。假二级动力学模型假定了在吸附过程中,吸附质与吸附剂之间通过电子交换成键的化学吸附是速控步骤,包含了外部膜扩散、表面吸附、颗粒内部扩散等吸附过程,因此能够比较确切地描述铀在SSD和YJ土壤介质上的吸附机制[21,22]

    • 吸附剂对金属离子的吸附机理可借助吸附等温模型描述。该模型是根据一定温度条件下,吸附剂对重金属离子的吸附容量与吸附溶质的平衡浓度之间的变化规律绘制出的等温曲线[23]。Freundlich和Langmuir是两种常见的吸附等温模型,其中Freundlich等温线方程是经验方程[24],可用于描述无机、有机化合物在许多吸附剂上的吸附情况,对大部分的吸附一阶实验数据适用,而且还能拟合高度杂化吸附体系的数据[25]。Freundlich吸附等温方程式如式(4)所示:

      ((4))

      式中:qe为吸附平衡达到时固相所吸附的溶质的浓度,mg·g-1Ce为平衡达到时溶质在液相中的浓度,mg·L-1kF是常数,与吸附容量有关;n为经验常数,与吸附强度有关,可以指示吸附等温线的非线性程度。

      Langmuir模型是常用的描述重金属离子吸附的模型之一,由物理化学家朗格缪尔提出。该模型刻画了在设定温度下分子在吸附剂固体表面的覆盖到聚集的程度。该等温方程主要基于三个假定条件[26,27]:(1)气体分子在吸附剂表面为单分子层吸附;(2)吸附在吸附剂表面的气体分子之间无相互作用力;(3)吸附剂表面的吸附能量分布均匀,每个气体分子只占据一个吸附位点。式(5)为Langmuir方程表达式:

      ((5))

      式中:qe为当吸附平衡达到时吸附质所吸附的溶质浓度,mg·g-1Ce为平衡时溶质在液相中的浓度,mg·L-1;B为吸附平衡常数,L·mg-1qm为吸附剂最大吸附容量,mg·g-1

      将平衡吸附实验数据分别按照Freundlich和Langmuir吸附等温方程进行回归处理,确定SSD和YJ土壤与U(VI)之间的相互作用和吸附机理,拟合结果及参数分别如图7图8表5所示。从表5中两种不同吸附模型所得到的拟合参数可以看出,在相同条件下,对于SSD和YJ两种土壤,使用Langmuir吸附等温模型拟合得到的SSD和YJ土壤吸附铀的线性相关系数R2( =0.987 2, =0.985 7)要高于使用Freundlich吸附等温模型拟合得到的R2( =0.950 7, =0.942 4)值,表明两种土壤对的吸附过程更适合用Langmuir吸附等温模型描述,即土壤介质对U(VI)吸附为均匀的单分子层吸附。用Langmuir吸附等温模型得到的SSD和YJ的qmax分别为0.270 4 mg/g和0.295 9 mg/g,这与实验所测数据qe(SSD)=0.199 2 mg/g和qe(YJ)=0.199 5 mg/g较为接近。

      图  7  Langmuir吸附等温线对SSD和YJ土壤吸附铀的拟合结果

      Figure 7.  Adsorption isotherms of U(VI) on SSD and YJ soils fitted by Langmuir model

      图  8  Freundlich吸附等温线对SSD和YJ土壤吸附铀的拟合结果

      Figure 8.  Adsorption isotherms of U(VI) on SSD and YJ soils fitted by Freundlich model

      表 5  不同土样吸附铀的Langmuir和Freundlich吸附等温方程参数

      Table 5.  Langmuir and Freundlich isotherm parameters of uranium adsorption on soils

      Model Soil R2 Qm /(mg·g-1) B /(L·mg-1)
      Langmuir SSD 0.987 2 0.270 4 7.096 2
      Model YJ 0.985 7 0.259 5 10.722 2
    • 本文通过静态实验探究了U(VI)初始质量浓度及离子强度对U(VI)在SSD和YJ土壤介质上吸附的影响,借助准二级动力学方程、Langmuir和Freundlich吸附等温模型对实验数据进行了拟合并获得了相关的模型参数。所得结论如下:

      1)不同铀初始质量浓度下的SSD和YJ土壤吸附铀的动力学特征既有相似又有区别之处,当铀初始质量浓度增大时,SSD及YJ土壤对U(VI)的平衡吸附量也增大,但去除率则分别从97.07%、91.56%下降至88.55%、87.93%。

      2)不同离子强度对SSD土壤吸附铀的影响不显著,说明铀在SSD土壤上的吸附很可能主要通过内层络合反应。

      3)借助准二级动力学模型,对不同实验条件下的SSD土壤和YJ土壤吸附铀的动力学数据进行拟合,拟合结果R2均大于0.999,表明准二级动力学方程适用于描述吸附过程,在吸附过程中化学机理可能起了重要作用。

      4)借助Langmuir和Freundlich吸附等温模型,对平衡吸附实验数据进行拟合的结果表明,Langmuir模型的拟合结果( =0.9872, =0.9857)优于Freundlich模型( =0.9507, =0.9424),说明SSD和YJ土壤吸附铀为均匀的单分子层吸附。

  • 参考文献 (27)

    目录

      /

      返回文章
      返回