• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CPTU的地质参数分析及其在海上风电场的应用

汪明元 王宽君 周力沛 狄圣杰 徐彬

汪明元, 王宽君, 周力沛, 狄圣杰, 徐彬. 基于CPTU的地质参数分析及其在海上风电场的应用[J]. 南方能源建设, 2018, 5(2): 37-46. doi: 10.16516/j.gedi.issn2095-8676.2018.02.005
引用本文: 汪明元, 王宽君, 周力沛, 狄圣杰, 徐彬. 基于CPTU的地质参数分析及其在海上风电场的应用[J]. 南方能源建设, 2018, 5(2): 37-46. doi: 10.16516/j.gedi.issn2095-8676.2018.02.005
Mingyuan WANG, Kuanjun WANG, Lipei ZHOU, Shengjie DI, Bin XU. Analysis of Geological Parameters Based on CPTU and Its Application in Offshore Wind Farm[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(2): 37-46. doi: 10.16516/j.gedi.issn2095-8676.2018.02.005
Citation: Mingyuan WANG, Kuanjun WANG, Lipei ZHOU, Shengjie DI, Bin XU. Analysis of Geological Parameters Based on CPTU and Its Application in Offshore Wind Farm[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(2): 37-46. doi: 10.16516/j.gedi.issn2095-8676.2018.02.005

基于CPTU的地质参数分析及其在海上风电场的应用

doi: 10.16516/j.gedi.issn2095-8676.2018.02.005
基金项目: 

中国电力建设股份有限公司重大科技项目 DJ-ZDXM-2014-17

详细信息
    作者简介:

    汪明元(通信作者) 1972-,男,四川成都人,教授级高级工程师,工学博士,中国电建集团华东勘测设计研究院一级专家,华东海上风电省级工程技术研究中心副主任,中国地质学会工程地质专委会海洋工作委员会副主任,主持了数十个海上风电场的勘察和工程地质特性研究,主编和参编相关规范7部(e-mail)wmy_90@163.com。

  • 中图分类号: TU447

Analysis of Geological Parameters Based on CPTU and Its Application in Offshore Wind Farm

  • 摘要:   [目的]  海上工程勘察中钻孔取样的扰动较大,易造成室内土工试验的可靠性不足。孔压静力触探(CPTU)在海上原位测试中具有独特的优势,在国际国内获得了广泛应用。  [方法]  为此,分析了国内外基于CPTU测试结果的地层划分和土体参数的分析方法,并对土体参数分析公式的适用性进行了评价。在此基础上,将国际上普遍采用的分析方法应用于我国海上风电场工程。  [结果]  结果表明:国外的经验参数可能高估土体的某些参数,需结合我国海域地层的区域性特征进行进一步研究。  [结论]  针对江苏、浙江和福建海域等区域性土,通过模型试验和多种手段原位测试的对比,对经验公式进行验证或改进,并对经验参数进行标定是可行的,可为我国海上风电场工程应用提供指导。
  • 图  1  海上CPTU设备

    Fig.  1  Piezocone penetration testing device

    图  2  CPTU探头及孔压传感器布置

    Fig.  2  Cone and pore pressure transducer of CPTU

    图  3  孔压效应示意图

    Fig.  3  Pore water pressure effects on measured parameters

    图  4  基于CPTU的土分类图(Robertson等,1986)

    Fig.  4  Soil behavior type classification system from CPTU data (after Robertson et al. , 1986)

    图  5  归一化土质分类图(Robertson,1990)

    Fig.  5  Soil behavior type classification chart based on normalized CPTU data (Robertson, 1990)

    图  6  相对密实度与有效内摩擦角的关系(Schmertanan,1978)

    Fig.  6  Relationship between φ′ and Dr(Schmertanan,1978)

    图  7  G0-qc-σv0关系曲线(Rix & Stokoe,1991)

    Fig.  7  G0-qc-σv0 curve(Rix & Stokoe,1991)

    图  8  某海上风电场基于CPTU的土质分类

    Fig.  8  Soils classification of a offshore wind farm based on CPTU

    图  9  土体浮容重(基于CPTU的计算值与室内试验值)

    Fig.  9  Soil unit weight from CPTU data and laboratory test

    图  10  根据CPTU数据估算的先期固结压力

    Fig.  10  Preconsolidation pressure based on CPTU data

    图  11  基于CPTU数据估算的有效内摩擦角和不排水抗剪强度与室内试验的对比

    Fig.  11  Comparison of effective internal friction angle and undrained shear strength from CPTU data and laboratory test

    表  1  基于土行为分类指数Ic的土质分类(Jefferies & Davies,1993)

    Tab.  1.   Soil behavior type classification based on SBT parameter Ic(Jefferies & Davies,1993)

    土类 Ic值范围
    有机质黏土 Ic>3.22
    黏土 2.82<Ic<3.22
    粉质混合土 2.54<Ic<2.82
    砂质混合土 1.90<Ic<2.54
    砂土 1.25<Ic<1.90
    砾砂 Ic<1.25
    下载: 导出CSV

    表  2  基于修正土行为分类指数Ic的土质分类方法(Robertson, 2010)

    Tab.  2.   Soil behavior type classification based on the modified Ic(Robertson, 2010)

    划分区域 土类 Ic值范围
    1 灵敏性细粒土 N/A
    2 有机质黏土 Ic>3.60
    3 黏土 2.95<Ic<3.60
    4 粉质混合物 2.60<Ic<2.95
    5 砂质混合物 2.05<Ic<2.60
    6 砂土 1.31<Ic<2.05
    7 密实砂土至砾砂 Ic<1.25
    8 非常密实的砂土至黏性砂土 N/A
    9 非常坚硬的超固结黏土至粉土 N/A
    下载: 导出CSV

    表  3  某海上风电场土类分层及描述

    Tab.  3.   Overview of typical soil units and geotechnical characterization

    土层 深度(海床以下) 土类 描述
    顶部软土层 3~9 m 有机质黏土 非常软的黏土层,有机质含量5%~10%
    顶部混合土层 10~36 m 粉质黏土 含有黏性土与粉性土、砂性土沉积,沉积物之间存在较多夹层和夹薄层现象,土的强度随着深度增加而增加
    粉质黏土混粉砂
    黏质粉土
    砂质粉土
    粉土
    粉细砂
    粉、黏性土层 37~48 m 淤泥质粉质黏土 含有黏性土与粉性土沉积,沉积物之间存在较多夹层和夹薄层现象,偶尔存在一定的砂土层
    粉质黏土
    粉质黏土混粉砂
    黏质粉土
    粉土
    砂质粉土
    底部软土层 48~56 m 淤泥质粉质黏土 强度与密度较低的粉质黏土
    底部混合土层 56~77 m 粉质黏土 粉土与黏土过渡层,随着深度增加粉粒含量增加,逐渐从黏土过渡至粉土,粉质黏土较为多见,常见于砂土层下
    粉质黏土混粉砂
    粉土
    细纱
    砂质粉土
    下载: 导出CSV

    表  4  某海上风电场某孔位的土质参数

    Tab.  4.   Soils parameters of a offshore wind farm

    序号 层名 层底埋深Z/ m 有效重度γ′/(kN·m-3) 有效内摩擦角φ′/(°) 不排水强度su/kPa
    1 粉质粘土 4.7 7.0 12
    2 粉土夹粉质粘土 5.7 7.4 27 17
    3 粉土夹粉砂 6.7 8.3 28 35
    4 粉质粘土夹粉土 9.1 8.0 30
    5 粉砂 17.0 9.2 31
    6 粉砂 19.6 9.3 32
    7 粉质粘土 23.2 7.9 30
    8 粉砂夹粉土 24.5 9.0 31
    9 粉细砂 25.7 10.0 36
    10 粉质粘土夹粉土 33.5 8.3 40~45
    11 粉质粘土夹粉砂 37.8 8.4 45~50
    12 粉质粘土 49.3 8.3 50~55
    13 粉质粘土夹粉土 54.3 8.5 65
    14 粉砂夹粉土 56.2 9.2 34
    15 粉质粘土夹粉土 59.0 8.8 70
    16 粉细砂 63.9 10.0 35
    17 粉质粘土夹粉土 68.6 9.4 105
    18 粉砂 70.1 9.8 34
    19 粉质粘土夹粉土 75.0 9.3 95
    下载: 导出CSV
  • [1] LUNNE T. In situ testing in offshore geotechnical investigations[C]//Anon.Proc. Int. Conf. on In Situ Measurement of Soil Properties and Case Histories,Bali,Indonesia.[S.l.:s.n.],2001:61-81.
    [2] LUNNE T,ROBERTSON P K,POWELL J J. Cone penetration testing in geotechnical practice [M]. London: E & FN Spon Routlege,1997.
    [3] SANDVEN R. Strength and deformation properties of fine grained soils obtained from piezocone tests [D]. Ph.D. thesis, Norwegian Institute of Technology, Trondheim, Department of Civil Engineering, Doktor ingenioravhandling, Norway, 1990.
    [4] ROBERTSON P K,CAMPANELLA R G,GILLESPIE D,et al. Use of piezometer cone data [C]//ASCE. In Situ ’86,A Specialty Conference:Use of in Situ Tests in Geotechnical Engineering,ASCE. 1986. USA: ASCE,1986: 1263-1280.
    [5] DOUGLAS B J,OLSEN R S. Soil classification using electric con penetrometer [C]//ASCE. Proceedings of the ASCE National Convention,St. Louis: ASCE,1981:209-227.
    [6] ROBERTSON P K. Soil classification using the cone penetration test[J]. Canadian Geotechnical Journal,1990,27(1):984-986.
    [7] JEFFERIES M G,DAVIES M P. Use of CPTU to estimate equivalent SPT N60[J]. ASTM Geotechnical Testing Journal,1993,16(4):458-468.
    [8] ROBERTSON P K. Interpretation of cone penetration tests-a unified approach[J]. Canadian Geotechnical Journal,2009,46(46):1337-1355.
    [9] MAYNE P W. Interpretation of geotechnical parameters from seismic piezocone tests [C]//CPT14. 3rd International Symposium on Cone Penetration Testing,Las Vegas,Nevada,USA,2014:47-73.
    [10] ZHANG Z,TUMAY M T. Non-traditional approaches to soil classification derived from the cone penetration test[J]. Probabilistic Site Characterization at the National Geotechnical Experimentation Sites,2003(121):100-149.
    [11] HEGAZY Y A. Delineating geostratigraphy by cluster analysis of piezocone data [D]. Atlanta, USA: Georgia Institute of Technology, 1990.
    [12] MAYNE P. W. Stress-strain-strength-flow parameters from enhanced in-situ tests [C]// Proceedings International Conference on In-situ Measurement of Soil Properties and Case Histories,Bali,Indonesia,2001:27-48.
    [13] SCHMERTMANN J H. Guidelines for cone penetration test(Performance and design): FHWATS-78-209 [S]. Washington D.C:Federal Highway Administration. 1978.
    [14] BALDI G,BELLOTTI R,GHIONNA V,et al. Interpretation of CPT′s and CPTU′s-part II:Drained penetration in sand [C]// Nayang Technical Institute. In Proceedings of the Fourth International Geotechnical Seminar,Singapore, 1986:143-156.
    [15] JAMIOLKOWSKI M,PRESTI D C F L,MANASSERO M. Evaluation of relative density and shear strength of sands from CPT and DMT[J]. In Soil Behaviour and Soft Ground Construction, ASCE Geotechnical Special Publication, 2003(119), 201-238.
    [16] MAYNE P W. Undisturbed sand strength from seismic cone tests[J]. Geomechanics and Geoengineering,2006,1(4):239-247.
    [17] SENNESET K,JANBU N,SVANO G. Strength and deformation parameters from cone penetration tests [C]// Proceedings of the 2nd European Symposium on Penetration Testing,ESPOT-Ⅱ. Rotterdam: Balkema Publishers,1982:863-870.
    [18] VESIC A S,Expansion of cavities in infinite soil mass[J]. Journal of the Soil Mechanics and Foundations Division,1972,98(3):265-290.
    [19] RANDOLPH M F,WROTH C P. An analytical solution for the consolidation around a driven pile[J]. International Journal for Numerical & Analytical Methods in Geomechanics,1979,3(3):217-229.
    [20] CAMPANELLA R G,ROBERTSON P K,GILLESPIE D,et al. Recent developments in in-situ testing of soils [C]// Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering,San Francisco,1985,Rotterdam: Balkema Publishers,1985:949-854.
    [21] LUNNE T,CHRISTOPHERSEN H P,TJELTA T I. Engineering use of piezocone data in North Sea clays [C]// Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering,San Francisco,1985,Rotterdam: Balkema Publishers,1985:907-912.
    [22] 刘松玉,蔡国军,童立元. 现代多功能CPTU技术理论与工程应用 [M]. 北京:科学出版社,2013.
    [23] MAYNE P W. Stress-strain-strength-flow parameters from enhanced in-situ tests [C]// Proceedings International Conference on In-situ Measurement of Soil Properties and Case Histories,Bali,Indonesia,2001:27-48.
    [24] LUNNE T,ROBERTSON P K,POWELL J J. Cone penetration testing in geotechnical practice [M]. London: E & FN Spon Routlege,1997.
    [25] MAYNE P W. Integrated ground behavior:In-situ and lab tests [M]. London:Taylar & Francis,2005.
    [26] PINCUS H J,MAYNE P W,RIX G J. Gmax-qc relationships for clays[J]. Geotech Testing Journal,1993,16(1):55-60.
    [27] JAMIOLKOWSKI M,GHIONNA V N,LANCELLOTTA R. New correlations of penetration tests for design practice [C]// Proceedings of the International Symposium on Penetration Testing,ISPOT-1,Orlando,1988. Rotterdam: Balkema Publishers,1988:263-296.
    [28] RIX G J,STOKOE K H. Correlation of initial tangent modulus and cone resistance [C]// Proceeding of the International Symposium on Calibration Chamber Testing,Potsdam,New York,1992. New York: Elsevier,1992: 351-361.
    [29] PIRATHEEPAN P. Estimating shear-wave velocity from SPT and CPT data. M.S. Thesis [D]. Clemson,South Carolina,USA: Clemson University,2002.
    [30] ANDRUS R D,MONHANAN N P,PIRATHEEPAN P,et al. Predicting shear-wave velocity from cone penetration resistance [C]//Earthquake Geotechnical Engineering, 4th Int. Conf. on Earthquake Geotechnical Engineering, Thessaloniki, Greece,June 25-28,2007.Netherlands:Springer, 2007:1-12.
  • [1] 郑晖, 朱婷婷, 何志云, 戚永乐.  多波束测深系统在海上风电桩基侵蚀监测中的应用 . 南方能源建设, 2023, 10(1): 88-97. doi: 10.16516/j.gedi.issn2095-8676.2023.01.011
    [2] 夏冰, 苗得胜, 张敏, 刘怀西, 葛文澎.  海上风机单桩基础稳流冲刷数值模拟 . 南方能源建设, 2023, 10(1): 81-87. doi: 10.16516/j.gedi.issn2095-8676.2023.01.010
    [3] 王李吉.  导管架大直径短桩竖向承载力CPTU方法应用分析 . 南方能源建设, 2023, 10(4): 193-199. doi: 10.16516/j.gedi.issn2095-8676.2023.04.020
    [4] 谢善益, 仲卫, 杨强, 谢恩彦, 周刚.  面向友好接入含氢能系统海上风电场台风期间的协同控制方法 . 南方能源建设, 2023, 10(4): 91-102. doi: 10.16516/j.gedi.issn2095-8676.2023.04.009
    [5] 蔡彦枫, 徐初琪, 汤东升, 王晴勤.  基于多尾流模型的大型海上风电场扩容试验研究 . 南方能源建设, 2023, 10(4): 138-147. doi: 10.16516/j.gedi.issn2095-8676.2023.04.014
    [6] 汤东升, 徐初琪, 王洪庆.  海上风电场钢结构腐蚀剖析及应对策略 . 南方能源建设, 2023, 10(6): 105-111. doi: 10.16516/j.gedi.issn2095-8676.2023.06.012
    [7] 李忠信, 孙枭雄, 刘东华, 贾鈜崴, 孙伟.  海上风电勘察中确定土体抗剪强度的实用方法 . 南方能源建设, 2021, 8(4): 37-42. doi: 10.16516/j.gedi.issn2095-8676.2021.04.006
    [8] 杨源, 程劲松, 汪少勇, 谭江平, 陈亮.  一种海上风电继电保护配置优化方案研究 . 南方能源建设, 2019, 6(1): 36-41. doi: 10.16516/j.gedi.issn2095-8676.2019.01.007
    [9] 郑明, 杨源, 沈云, 徐晓燕, 陶艳.  海上风电场孤网状态下的备用柴油发电机方案研究 . 南方能源建设, 2019, 6(1): 24-30. doi: 10.16516/j.gedi.issn2095-8676.2019.01.005
    [10] 刘沙, 王中权, 蔡彦枫.  海上风电场运行期尾流损失分析 . 南方能源建设, 2019, 6(1): 66-70. doi: 10.16516/j.gedi.issn2095-8676.2019.01.011
    [11] 常胜, 李炬添, 张振, 沈云, 王海龙.  海上风电场联合送出优化方案研究 . 南方能源建设, 2019, 6(2): 49-53. doi: 10.16516/j.gedi.issn2095-8676.2019.02.009
    [12] 郑明, 王长虹.  海上风电场输电方式研究 . 南方能源建设, 2018, 5(2): 99-108. doi: 10.16516/j.gedi.issn2095-8676.2018.02.014
    [13] 谭任深, 杨源, 程劲松, 徐龙博.  海上风电场交直流一体化方案分析与设计 . 南方能源建设, 2018, 5(S1): 52-57. doi: 10.16516/j.gedi.issn2095-8676.2018.S1.010
    [14] 元国凯, 朱光涛, 黄智军.  海上风电场施工安装风险管理研究 . 南方能源建设, 2016, 3(S1): 190-193. doi: 10.16516/j.gedi.issn2095-8676.2016.S1.043
    [15] 蔡彦枫, 王海龙, 周川, 陈德辉, 彭明.  风向对广东海上风电场风机布置的影响 . 南方能源建设, 2016, 3(4): 113-118. doi: 10.16516/j.gedi.issn2095-8676.2016.04.023
    [16] 周川, 黄亚珏.  广东某海上风电场波浪能资源分析 . 南方能源建设, 2016, 3(4): 119-122. doi: 10.16516/j.gedi.issn2095-8676.2016.04.024
    [17] 谭任深.  海上风电场工程集电系统拓扑设计研究 . 南方能源建设, 2015, 2(3): 67-71. doi: 10.16516/j.gedi.issn2095-8676.2015.03.013
    [18] 刘杨华, 林舜江.  电力市场环境下海上风电场综合评估研究 . 南方能源建设, 2015, 2(3): 34-37. doi: 10.16516/j.gedi.issn2095-8676.2015.03.006
    [19] 杨源, 周伟, 汪少勇, 谭江平, 徐龙博.  海上风电场的火灾防护方案设计 . 南方能源建设, 2015, 2(S1): 93-97. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.020
    [20] 郑明.  300 MW海上风电场电气主接线设计 . 南方能源建设, 2015, 2(3): 62-66. doi: 10.16516/j.gedi.issn2095-8676.2015.03.012
  • 加载中
图(11) / 表 (4)
计量
  • 文章访问数:  544
  • HTML全文浏览量:  81
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-04
  • 修回日期:  2018-06-08
  • 刊出日期:  2020-07-11

基于CPTU的地质参数分析及其在海上风电场的应用

doi: 10.16516/j.gedi.issn2095-8676.2018.02.005
    基金项目:

    中国电力建设股份有限公司重大科技项目 DJ-ZDXM-2014-17

    作者简介:

    汪明元(通信作者) 1972-,男,四川成都人,教授级高级工程师,工学博士,中国电建集团华东勘测设计研究院一级专家,华东海上风电省级工程技术研究中心副主任,中国地质学会工程地质专委会海洋工作委员会副主任,主持了数十个海上风电场的勘察和工程地质特性研究,主编和参编相关规范7部(e-mail)wmy_90@163.com。

  • 中图分类号: TU447

摘要:   [目的]  海上工程勘察中钻孔取样的扰动较大,易造成室内土工试验的可靠性不足。孔压静力触探(CPTU)在海上原位测试中具有独特的优势,在国际国内获得了广泛应用。  [方法]  为此,分析了国内外基于CPTU测试结果的地层划分和土体参数的分析方法,并对土体参数分析公式的适用性进行了评价。在此基础上,将国际上普遍采用的分析方法应用于我国海上风电场工程。  [结果]  结果表明:国外的经验参数可能高估土体的某些参数,需结合我国海域地层的区域性特征进行进一步研究。  [结论]  针对江苏、浙江和福建海域等区域性土,通过模型试验和多种手段原位测试的对比,对经验公式进行验证或改进,并对经验参数进行标定是可行的,可为我国海上风电场工程应用提供指导。

English Abstract

汪明元, 王宽君, 周力沛, 狄圣杰, 徐彬. 基于CPTU的地质参数分析及其在海上风电场的应用[J]. 南方能源建设, 2018, 5(2): 37-46. doi: 10.16516/j.gedi.issn2095-8676.2018.02.005
引用本文: 汪明元, 王宽君, 周力沛, 狄圣杰, 徐彬. 基于CPTU的地质参数分析及其在海上风电场的应用[J]. 南方能源建设, 2018, 5(2): 37-46. doi: 10.16516/j.gedi.issn2095-8676.2018.02.005
Mingyuan WANG, Kuanjun WANG, Lipei ZHOU, Shengjie DI, Bin XU. Analysis of Geological Parameters Based on CPTU and Its Application in Offshore Wind Farm[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(2): 37-46. doi: 10.16516/j.gedi.issn2095-8676.2018.02.005
Citation: Mingyuan WANG, Kuanjun WANG, Lipei ZHOU, Shengjie DI, Bin XU. Analysis of Geological Parameters Based on CPTU and Its Application in Offshore Wind Farm[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(2): 37-46. doi: 10.16516/j.gedi.issn2095-8676.2018.02.005
  • 海上风电场作为近年国家发展的重点,目前江苏、浙江、福建、广东、山东海域呈现大规模推进的形势。海洋环境下钻孔取样的扰动较大,室内试验获得的岩土参数可靠性不足。因此,海上工程地质勘察需采用对土体无扰动或轻微扰动的原位测试技术,而孔压静力触探试验(CPTU)因其适用于深水、能获得连续的曲线、精确性和可重复性良好等优点在海上工程勘察中得到广泛应用,在欧洲海上风电场工程中积累了较多的经验。据统计约95%的海洋土原位测试采用了CPT/CPTU(Lunne, 2001)[1]

    海洋静力触探分为海床式(Seabed CPT)、井下式(将探头从钻孔底部压入土中),也可分为固定平台式和漂浮平台式。海床式静力触探(图1a)采用勘查船将静探仪沉至海床,依靠自身重力作反力贯入地层中,适用于深水,但贯入深度受到一定制约。井下静力触探系统(图1b)将钻探和CPT测试相结合,探头从钻孔底部贯入地层中,可在动态定位的大型综合勘探船上实施,也可在海上固定平台上实施,其贯入深度较少受限。海上固定式平台一般采用自升式平台,也可采用简易支架平台,其适用水深受到较大限制。

    CPTU测试成果广泛用于海底地层划分、地层状态判别、土体参数分析、地基承载力估算和海底地质灾害评估。通过孔隙水压力对锥尖阻力进行修正,结合锥身侧阻力对地层进行划分并判断黏性土的稠度状态和无黏性土的密实状态,通过经验公式分析土体的重度、侧压力系数、渗透系数,原位状态下的压缩模量、杨氏模量和小应变剪切模量,黏性土的超固结比、不排水抗剪强度、固结系数,无黏性土的相对密实度和有效内摩擦角等参数。

    • CPTU探头在饱和土中贯入时,可测得土中的孔压,包括锥面(u1)、锥肩(u2)及摩擦筒尾部(u3)的孔压(图2)。既可测得贯入引起的超孔压,也可测得其随时间的消散过程。

      图  2  CPTU探头及孔压传感器布置

      Figure 2.  Cone and pore pressure transducer of CPTU

      采用锥肩的孔压u2对实测锥尖阻力qc进行修正,见下式(Lunne等,1997[2])。

      ((1))
      ((2))

      式中:qt为修正后的锥尖阻力(kPa);qc为实测的锥尖阻力(kPa);u2为锥肩的孔隙水压力(图2,kPa);a为有效面积比,大部分探头为0.55~0.9,常为0.8;Aa为顶柱的横截面积(图3,cm2);Ac为锥底的横截面积(图3,cm2)。

      图  3  孔压效应示意图

      Figure 3.  Pore water pressure effects on measured parameters

      也可采用锥尖的孔压u1,根据经验公式计算u2(Sandven,1990[3]),见下式:

      ((3))

      式中:u1为锥面的孔压(kPa);u2为锥尖的孔压(kPa);u0为静水压(kPa);K为经验系数。

      可采用下式对侧壁摩阻力进行修正(图3):

      ((4))

      式中:ft为修正后的侧壁摩阻力(kPa);u3为套筒尾部位置的孔隙水压力(kPa);Ast为套筒顶部的横截面积(cm2);Asb为套筒底部的横截面积(cm2);As为侧壁摩擦筒表面积(cm2)。

      一般情况下AstAsb时,ft基本与fs相等。

      采用下列公式计算摩阻比Rf和孔压参数比Bq

      ((5))
      ((6))

      式中:σv0为土的竖向总应力(kPa);u0为静水压(kPa);Δu为超孔压(kPa)。

    • 在不同土类中贯入的锥尖阻力qc、侧壁摩阻力fs、锥肩孔隙水压力u2的响应不同,可据此对地层进行辨别与划分。Robertson等(1986)[4]根据Douglas与Olsen(1981)[5]的土质分类,提出了土的分类图(图4a),并提出了以qtBq的分类图(图4b),但图4对深度大于30m的土层分类可能产生偏差。

      图  4  基于CPTU的土分类图(Robertson等,1986)

      Figure 4.  Soil behavior type classification system from CPTU data (after Robertson et al. , 1986)

      Robertson(1990)[6]进一步对锥尖阻力qt与摩阻比Rf进行了修正,考虑了上覆压力的影响,采用归一化锥尖阻力Qt、归一化摩阻比Ft、孔压参数比Bq对土进行分类(图5)。

      图  5  归一化土质分类图(Robertson,1990)

      Figure 5.  Soil behavior type classification chart based on normalized CPTU data (Robertson, 1990)

      QtFt的计算如下:

      ((7))
      ((8))

      式中:σv0为土的有效自重应力。

      Jefferies与Davies(1993)[7]对Robertson提出的归一化土质分类图(图5)合并为同心圆形式,并采用土行为分类指数Ic对土质分类(表1),Ic的表达式如下:

      表 1  基于土行为分类指数Ic的土质分类(Jefferies & Davies,1993)

      Table 1.  Soil behavior type classification based on SBT parameter Ic(Jefferies & Davies,1993)

      土类 Ic值范围
      有机质黏土 Ic>3.22
      黏土 2.82<Ic<3.22
      粉质混合土 2.54<Ic<2.82
      砂质混合土 1.90<Ic<2.54
      砂土 1.25<Ic<1.90
      砾砂 Ic<1.25
      ((9))

      Robertson(2009)[8]进一步修正了土行为分类指数Ic,同时Mayne(2014)[9]在Robertson(2009)的基础上细化了土的分类(表2),修正的土行为分类指数见下式:

      表 2  基于修正土行为分类指数Ic的土质分类方法(Robertson, 2010)

      Table 2.  Soil behavior type classification based on the modified Ic(Robertson, 2010)

      划分区域 土类 Ic值范围
      1 灵敏性细粒土 N/A
      2 有机质黏土 Ic>3.60
      3 黏土 2.95<Ic<3.60
      4 粉质混合物 2.60<Ic<2.95
      5 砂质混合物 2.05<Ic<2.60
      6 砂土 1.31<Ic<2.05
      7 密实砂土至砾砂 Ic<1.25
      8 非常密实的砂土至黏性砂土 N/A
      9 非常坚硬的超固结黏土至粉土 N/A
      ((10))

      表2中1、8、9区的计算方法可参照Mayne(2014)[9]的划分方法,灵敏性细粒土采用式(11)判别,密实砂性土和坚硬黏性土采用式(12)判别。当采用式(12)判定时,1.5%<Ft<4.5%时为区域8,Ft>4.5%时为区域9。

      ((11))
      ((12))

      此外,还有概率分类法(Zhang与Tumay,2003[10])和聚类分析法(Hegazy,1998[11]),工程上应用较少。

    • Robertson(2009)[8]基于无量纲化的锥尖阻力qt/pa和摩阻比Rf提出了土的天然重度计算公式:

      ((13))

      式中:pa为参考大气压(100kPa);γ为土的天然重度(kN/m3);γw为水的重度(kN/m3)。

      Mayne(2001)[12]提出土的天然重度与剪切波速、深度的经验公式:

      ((14))

      式中:Vs为剪切波速(m/s);z为深度(m)。

    • 砂性土的有效内摩擦角主要通过经验或半经验相关关系法(标定罐试验)分析,建立相对密实度与峰值摩擦角的关系。Schmertanan(1978)[13]提出了有效内摩擦角φ′与相对密实度Dr的区间图,如图6所示。

      图  6  相对密实度与有效内摩擦角的关系(Schmertanan,1978)

      Figure 6.  Relationship between φ′ and Dr(Schmertanan,1978)

      Baldi等(1986)[14]根据Ticino砂土标定罐试验,建议采用下式分析相对密实度Dr

      ((15))

      式中:C0C1C2为土的常数;σ′为有效应力,可采用平均有效应力或竖向有效应力。

      Jamiolkowski等(2003)[15]在大量标定罐试验的基础上,采用直剪试验得到干砂和饱和湿砂相对密实度的关系:

      ((16))
      ((17))

      式中:K0为侧向土压力系数;Dr(dry)为干砂的相对密实度;Dr(saturated)为饱和湿砂的相对密实度。

      Mayne(2006)[16]提出了直接采用修正锥尖阻力qt估算有效内摩擦角的经验公式:

      ((18))
    • 黏性土不排水抗剪强度su的计算可采用理论计算法和经验公式法。理论计算法主要有承载力理论法、孔穴扩张理论法、应力路径理论法等。经验公式法包括直接经验公式法与间接经验公式法。

      直接经验公式法包括修正锥尖阻力法、有效锥尖阻力法和超静孔压法,计算公式分别为:

      ((19))
      ((20))
      ((21))

      式中:NktNkeNΔu均为经验系数。

      对于修正锥尖阻力法,经验系数Nkt的取值具有一定的区域性,Robertson(2009)[8]建议Nkt取10~18。

      对于有效锥尖阻力法,Senneset等(1982)[17]建议Nke=9±3,但一般认为Nke取值较离散。

      对于超静孔压法,从孔穴扩张理论(Vesic,1972[18];Randolph与Wroth,1979[19];Campanella等,1985[20])得到NΔu的理论值为2~20。Lunne等(1985)[21]发现NΔu与Bq有较好的相关性,根据室内CU试验反推的NΔu范围为4~10。

      刘松玉等(2013)[22]对连云港海相黏性土进行了CPTU试验,认为修正锥尖阻力法对Nkt的拟合效果最好。部分国外学者认为超静孔压法适用于强度较低的黏性土,而软黏土的修正锥尖阻力会出现一定的不确定性。

      间接经验公式法一般先估算黏性土的超固结比OCR。Mayne(1991)[23]采用孔穴扩张理论和临界状态理论提出了计算OCR的半经验公式:

      ((22))

      式中:M为临界状态线的斜率;σv0为土体的有效竖向应力。

      Lunne等(1997)[24]提出采用归一化锥尖阻力来估算OCR:

      ((23))

      式中:σpc为先期固结压力。k一般为0.2~0.5,平均值为0.3。

      Mayne等(2005)[25]给出了估算先期固结压力的简化公式:

      ((24))
      ((25))

      式中:m为土类参数,随细颗粒含量增加而增大;σatm为大气压力(kPa)。

      Robertson(2009)[8]在Lunne等(1997)[24]的基础上提出了OCR的估算公式:

      ((26))

      目前一般采用Lunne等(1997)[24]k值法估算OCR,再采用SHANSEP法(Stress History and Normalised Soil Engineering Properties)估算不排水抗剪强度su,估算公式如下:

      ((27))

      式中:a为正常固结土不排水抗剪强度与有效竖向应力比值,一般可取0.25~0.33;b为反映超固结比OCR对黏土不排水强度影响的经验参数,一般可取0.65~1.0。

      经验系数ab在不同区域有较大差异,需事先采用室内模型试验或通过未扰动样的三轴不排水试验标定。

    • 土的小应变剪切模量G0的估算可分别采用直接法和间接法,直接法通过CPTU的数据估算,间接法则先计算土的剪切波速Vs

      Pincus等(1993)[26]认为大多数黏性土的小应变剪切模量G0与孔隙比和锥尖阻力存在以下关系:

      ((28))

      Jamiolkowski等(1988)[27]发现土的Dr和原位有效应力的变化控制着qcG0,对未胶结和未老化的无黏性土,qcG0呈现一定的相关性。基于标定罐试验与现场测试结果,Rix与Stokoe(1991)[28]提出了G0-qc-σv0的关系曲线(图7),发现归一化值越低时,G0/qc变化范围越大,压缩性越大的砂性土越趋向于更低的值,因此G0/qc越高。

      图  7  G0-qc-σv0关系曲线(Rix & Stokoe,1991)

      Figure 7.  G0-qc-σv0 curve(Rix & Stokoe,1991)

      采用带剪切波速测试的静力触探时,黏性土和砂性土均可下式估算小应变剪切模量G0

      ((29))

      式中:ρ为密度。

      Piratheepan(2002)[29]分别给出了砂性土和黏性土剪切波速Vs的估算公式:

      ((30))
      ((31))

      式中:D为泥面以下土体的深度(m)。

      Andrus等(2007)[30]对Piratheepan(2002)[29]的公式进行了合并,得到了可用于砂性土和黏性土的剪切波速Vs估算公式:

      ((32))

      式中:Sf为尺寸效应参数,可取0.92。

    • 某海上风电场位于海岸线约22 km处,基于CPTU测试的数据计算修正锥尖阻力qt与摩阻比Rf,得到不同孔位不同深度的土质分类情况如图8所示,其土类分层及描述如表3所示。图8基于ISO标准划分,而基于我国标准的分类图是今后研究的重点。

      图  8  某海上风电场基于CPTU的土质分类

      Figure 8.  Soils classification of a offshore wind farm based on CPTU

      表 3  某海上风电场土类分层及描述

      Table 3.  Overview of typical soil units and geotechnical characterization

      土层 深度(海床以下) 土类 描述
      顶部软土层 3~9 m 有机质黏土 非常软的黏土层,有机质含量5%~10%
      顶部混合土层 10~36 m 粉质黏土 含有黏性土与粉性土、砂性土沉积,沉积物之间存在较多夹层和夹薄层现象,土的强度随着深度增加而增加
      粉质黏土混粉砂
      黏质粉土
      砂质粉土
      粉土
      粉细砂
      粉、黏性土层 37~48 m 淤泥质粉质黏土 含有黏性土与粉性土沉积,沉积物之间存在较多夹层和夹薄层现象,偶尔存在一定的砂土层
      粉质黏土
      粉质黏土混粉砂
      黏质粉土
      粉土
      砂质粉土
      底部软土层 48~56 m 淤泥质粉质黏土 强度与密度较低的粉质黏土
      底部混合土层 56~77 m 粉质黏土 粉土与黏土过渡层,随着深度增加粉粒含量增加,逐渐从黏土过渡至粉土,粉质黏土较为多见,常见于砂土层下
      粉质黏土混粉砂
      粉土
      细纱
      砂质粉土

      基于CPTU对土体的物理力学参数进行分析,并与室内土工试验的结果对比,结合工程经验提出不同深度的土质参数取值,如表4所示。

      表 4  某海上风电场某孔位的土质参数

      Table 4.  Soils parameters of a offshore wind farm

      序号 层名 层底埋深Z/ m 有效重度γ′/(kN·m-3) 有效内摩擦角φ′/(°) 不排水强度su/kPa
      1 粉质粘土 4.7 7.0 12
      2 粉土夹粉质粘土 5.7 7.4 27 17
      3 粉土夹粉砂 6.7 8.3 28 35
      4 粉质粘土夹粉土 9.1 8.0 30
      5 粉砂 17.0 9.2 31
      6 粉砂 19.6 9.3 32
      7 粉质粘土 23.2 7.9 30
      8 粉砂夹粉土 24.5 9.0 31
      9 粉细砂 25.7 10.0 36
      10 粉质粘土夹粉土 33.5 8.3 40~45
      11 粉质粘土夹粉砂 37.8 8.4 45~50
      12 粉质粘土 49.3 8.3 50~55
      13 粉质粘土夹粉土 54.3 8.5 65
      14 粉砂夹粉土 56.2 9.2 34
      15 粉质粘土夹粉土 59.0 8.8 70
      16 粉细砂 63.9 10.0 35
      17 粉质粘土夹粉土 68.6 9.4 105
      18 粉砂 70.1 9.8 34
      19 粉质粘土夹粉土 75.0 9.3 95

      根据CPTU测试的数据对不同深度土体的浮重度进行计算,如图9所示,可见对浅部松散的无黏性土层,基于CPTU数据的计算值小于室内试验值,而对深部密实的无黏性土层,基于CPTU数据的计算值大于室内试验值,反映了松砂取样振密而密砂取样振松的普遍规律。

      图  9  土体浮容重(基于CPTU的计算值与室内试验值)

      Figure 9.  Soil unit weight from CPTU data and laboratory test

      对于黏性土的不排水抗剪强度,也可采用间接法对CPTU数据进行分析。采用经验参数估算的先期固结压力如图10所示。可见,估算的先期固结压力数据点较为离散,如根据建议的经验参数取值,可能会高估先期固结压力σpc,以此计算的不排水抗剪强度可能偏高,因此间接法的经验公式和经验参数取值,也需结合各海域地层的实际情况进行标定和论证。

      图  10  根据CPTU数据估算的先期固结压力

      Figure 10.  Preconsolidation pressure based on CPTU data

      基于CPTU数据分析的有效内摩擦角和不排水抗剪强度,与室内试验结果的对比如图10所示。对无黏性土,如图11a所示,基于CPTU分析的有效摩擦角与慢剪试验结果基本一致,采用CPTU的经验分析法是可行的。而对于黏性土,如图11b所示,采用修正锥尖阻力Nkt法得到的结果普遍比室内不固结不排水试验(UU)结果大,但小于室内固结快剪强度指标计算的强度值。因钻探取样卸除了原位有效应力,造成试样扰动,使试样进行室内三轴不固结不排水试验获得的不排水抗剪强度偏低,我国某些地基基础设计规范建议对试样进行预固结后再进行室内试验,预固结压力可选择有效自重应力或先期固结压力的一定比例。另一方面,基于CPTU数据估算黏性土的不排水抗剪强度,其经验系数不宜盲目套用国外的经验系数,否则可能高估黏性土的不排水抗剪强度,而应针对本地区的海相黏性土进行专门的标定。在室内采用模型试验,对不同含水率和不同不排水强度的黏性土进行CPTU测试,根据经验公式计算的不排水强度,与十字板、T形贯入仪或球形贯入仪测得的不排水强度进行对比,估算经验参数的范围,是可行的研究方法。

      图  11  基于CPTU数据估算的有效内摩擦角和不排水抗剪强度与室内试验的对比

      Figure 11.  Comparison of effective internal friction angle and undrained shear strength from CPTU data and laboratory test

    • 海洋工程勘察中CPTU原位测试技术具有独特的优点,已在我国东部、南部、北部海上风电场勘察中得到成功的应用。

      国际上基于CPTU进行地层划分,判断无黏性土的密实状态和黏性土的稠度状态,估算土层的有效重度,分析无黏性土的有效摩擦角和黏性土的不排水抗剪强度等,均已有较为成熟的方法和经验。但由于各海域土层的区域性特征,不宜盲目套用国外的经验公式及其参数。

      结合我国各海域的区域性地层特征,针对江苏海域典型的粉土、粉砂,浙江海域典型的软黏土,福建海域典型的花岗岩残积土等区域性土,通过模型试验和多种手段原位测试的对比,对经验公式进行验证或改进,并对经验参数进行标定是切实可行的。同时,基于我国标准的土分类图也需进一步研究。

  • 参考文献 (30)

    目录

      /

      返回文章
      返回