高级检索

基于模糊逻辑的多特征参量综合锂电池SOH评估

黄炜昭, 徐曙, 陈荔, 刘玉, 胡蓉

黄炜昭, 徐曙, 陈荔, 刘玉, 胡蓉. 基于模糊逻辑的多特征参量综合锂电池SOH评估[J]. 南方能源建设, 2019, 6(3): 98-104. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.017
引用本文: 黄炜昭, 徐曙, 陈荔, 刘玉, 胡蓉. 基于模糊逻辑的多特征参量综合锂电池SOH评估[J]. 南方能源建设, 2019, 6(3): 98-104. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.017
Weizhao HUANG, Shu XU, Li CHEN, Yu LIU, Rong HU. Multiple Characteristic Variables Comprehensive SOH Evaluation Based on Fuzzy Logic for Lithium-ion Battery[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(3): 98-104. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.017
Citation: Weizhao HUANG, Shu XU, Li CHEN, Yu LIU, Rong HU. Multiple Characteristic Variables Comprehensive SOH Evaluation Based on Fuzzy Logic for Lithium-ion Battery[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(3): 98-104. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.017
黄炜昭, 徐曙, 陈荔, 刘玉, 胡蓉. 基于模糊逻辑的多特征参量综合锂电池SOH评估[J]. 南方能源建设, 2019, 6(3): 98-104. CSTR: 32391.14.j.gedi.issn2095-8676.2019.03.017
引用本文: 黄炜昭, 徐曙, 陈荔, 刘玉, 胡蓉. 基于模糊逻辑的多特征参量综合锂电池SOH评估[J]. 南方能源建设, 2019, 6(3): 98-104. CSTR: 32391.14.j.gedi.issn2095-8676.2019.03.017
Weizhao HUANG, Shu XU, Li CHEN, Yu LIU, Rong HU. Multiple Characteristic Variables Comprehensive SOH Evaluation Based on Fuzzy Logic for Lithium-ion Battery[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(3): 98-104. CSTR: 32391.14.j.gedi.issn2095-8676.2019.03.017
Citation: Weizhao HUANG, Shu XU, Li CHEN, Yu LIU, Rong HU. Multiple Characteristic Variables Comprehensive SOH Evaluation Based on Fuzzy Logic for Lithium-ion Battery[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(3): 98-104. CSTR: 32391.14.j.gedi.issn2095-8676.2019.03.017

基于模糊逻辑的多特征参量综合锂电池SOH评估

基金项目: 

深圳供电局科技项目“完善输变电设备装备技术导则实施细则及其配套技术规范” 090000KK52170022

详细信息
    作者简介:

    黄炜昭(通信作者) 1981-,男,福建泉州人,深圳供电局有限公司,高级工程师,电力工程硕士,主要从事高压设备管理和输变电智能化技术研究(e-mail)goodbean2000@163.com。

    徐曙 1986-,男,湖北武汉人,深圳供电局有限公司,高级工程师,电气工程及其自动化硕士,主要从事高压输电线路运维工作(e-mail)158155513590@163.com。

    陈荔 1980-,女,广东兴宁人,中国能源建设集团广东省电力设计研究院有限责任公司,高级工程师,电力系统及其自动化硕士,主要从事储能站、高压输变电设计工作(e-mail)chenli@gedi.com.cn。

    刘玉 1991-,女,湖南衡阳人,中国能源建设集团广东省电力设计研究院有限责任公司,工程师,高电压与绝缘技术硕士,主要从事储能站、高压输变电设计工作(e-mail)liuyu2@gedi.com.cn。

    胡蓉 1987-,女,湖南娄底人,中国能源建设集团广东省电力设计研究院有限责任公司,高级工程师,高电压与绝缘技术硕士,主要从事高压输变电设计工作(e-mail)hurong@gedi.com.cn。

  • 中图分类号: TK01; TM7

Multiple Characteristic Variables Comprehensive SOH Evaluation Based on Fuzzy Logic for Lithium-ion BatteryEn

  • 摘要:
      [目的]  针对锂离子电池SOH(State of Health)评估易受电池特性不一致影响,从而产生评估结果分散并最终导致难以满足电动汽车服役环境需求的问题。
      [方法]  分析了典型储能元件NCM电池在寿命循环测试过程中的开路电压曲线、脉冲电压响应和增量容量曲线的相应变化。选取与电池容量衰减密切相关的6种特征参量,提出一种基于模糊逻辑的隶属函数,建立SOH评价集关联特征参量,并采用以相关系数为标度的层次分析法确定参量指标对评估结果影响权值的SOH综合评估方法,最后以完成寿命循环测试的4只NCM-21700电池对所提出方法的有效性进行了验证。
      [结果]  结果表明:该方法能有效消减SOH评估结果的分散,评估平均误差不超过3%,最大误差不超过5%。
      [结论]  所提SOH综合评估方法是正确并有效的,可为实际应用提供指导。
    Abstract:
      [Introduction]  (The SOH(State of Health) evaluation of lithium-ion batteries is difficult to meet the on-board environment requirements of electric vehicles because of the dispersion of evaluation results was caused by the inconsistent characteristics of batteries.
      [Method]  To solve the problem, the corresponding changes of open circuit voltage curve, pulse voltage response and incremental capacity curve of typical energy storage component NCM battery during life cycle test were analyzed. 6 characteristic variables which were closely related to the battery capacity loss were selected, and a comprehensive SOH evaluation method based on fuzzy logic was proposed. In this method, membership function was used to establish the relationship between SOH evaluation sets and variable indicators, and analytic hierarchy process based on correlation coefficient was used to determine the weights of variable indicators that have an impact on the evaluation results. Finally, the validity of the proposed method was verified by four NCM-21700 batteries that completed the life cycle test.
      [Result]  The results show that the method can effectively reduce the dispersion of SOH evaluation, and the average error is not more than 3% as well as the maximum error is no more than 5%.
      [Conclusion]  This work provides some guidance for further study on state of health evaluation of lithium-ion batteries.
  • 图  1   SOH评估指标体系

    Figure  1.   SOH evaluation indicators system

    图  2   各指标与容量衰减散点图

    Figure  2.   The scattered plots between each indicator and capacity loss

    图  3   隶属度函数示意图

    Figure  3.   Diagram of membership function

    图  4   三号电池在不同剩余容量下的模糊集合

    Figure  4.   Fuzzy set of battery 3 under different residual capacity

    图  5   NCM电池SOH评估结果

    Figure  5.   SOH evaluation results of NCM batteries

    表  1    α2α5选择结果

    Table  1   Selection results of α2~α5

    指标 α2 α3 α4 α5
    x1* 0.07 0.27 0.50 0.62
    x2* 0.16 0.35 0.51 0.67
    x3* 0.14 0.31 0.51 0.64
    x4* 0.43 0.66 0.83 0.91
    x5* 0.86 0.69 0.50 0.27
    x6* 0.69 0.51 0.33 0.20
    下载: 导出CSV

    表  3   与单参量评估方法对比

    Table  3   Comparing with single variable evaluation %

    误差 内阻 基波幅值 样本熵 标准差 综合评估
    平均误差 4.02 4.24 4.70 5.76 2.62
    最大误差 7.73 9.74 16.54 12.40 4.96
    下载: 导出CSV
  • [1]

    HANNAN M A,LIPU M S H,HUSSAIN A,et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications:challenges and recommendations [J]. Renewable & Sustainable Energy Reviews,2017,78(1):834-854.

    [2]

    YONG J Y, RAMACHANDARAMURTHY V K,TAN K M,et al. A review on the state-of-the-art technologies of electric vehicle,its impacts and prospects [J]. Renewable and Sustainable Energy Reviews,2015,49(1):365-385.

    [3]

    SUN F,XIONG R,HE H. A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique [J]. Applied Energy,2016,162(1):1399-1409.

    [4] 唐偲,鲁丽娟. 磷酸铁锂电池在电力系统中的应用研究 [J]. 南方能源建设,2016,3(增刊1):39-42.
    [5]

    CONTE F V. Battery and battery management for hybrid electric vehicles:a review [J]. E & I Elektrotechnik and Informationstechnik,2006,123(10):424-431.

    [6]

    XIONG R,TIAN J,MU H,et al. A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries [J]. Applied Energy,2017,207(1):372-383.

    [7] 沈佳妮,贺益君,马紫峰. 基于模型的锂离子电池SOC及SOH估计方法研究进展 [J]. 化工学报,2018,69(1):309-316.
    [8]

    LU L,HAN X,LI J,et al. A review on the key issues for lithium-ion battery management in electric vehicles [J]. Journal of Power Sources,2013,226(1):272-288.

    [9]

    SCROSATI B,JÜRGEN G. Lithium batteries:Status,prospects and future [J]. Journal of Power Sources,2010,195(9):2419-2430.

    [10]

    NAGPURE S C,BHUSHAN B. Atomic force microscopy studies of aging mechanisms in Lithium-ion batteries [M]. Applied Scanning Probe Methods XIII. Springer Berlin Heidelberg,2009:203-233.

    [11]

    WOHLFAHRT-MEHRENS M,VOGLER C,GARCHE J. Aging mechanisms of Lithium cathode materials [J]. Journal of Power Sources,2004,127(1):58-64.

    [12]

    VETTER J,NOVáK P,WAGNER M R,et al. Ageing mechanisms in Lithium-ion batteries[J]. Journal of Power Sources,2005,147(1):269-281.

    [13]

    ZOU Y,HU X,MA H,et al. Combined state of charge and state of health estimation over Lithium-ion battery cell cycle lifespan for electric vehicles [J]. Journal of Power Sources,2015,273(1):793-803.

    [14]

    CHEN Z,CHUNTING CHRIS M I,et al. Online battery state of health estimation based on genetic algorithm for electric and hybrid vehicle applications [J]. Journal of Power Sources,2013,240(31):184-192.

    [15]

    ZHENG Y,HAN X,LU L,et al. Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles [J]. Journal of Power Sources,2013,223(1):136-146.

    [16]

    WIDODO A,SHIM M C,CAESARENDRA W,et al. Intelligent prognostics for battery health monitoring based on sample entropy [J]. Expert Systems with Applications,2011,38(9):11763-11769.

    [17]

    CHEN Y,BAO J,XIANG Z,et al. Predictability analysis of lithium-ion battery remaining useful life with multiscale entropy [C] //IEEE.org. 2013 Fifth international conference on computational and information sciences (ICCIS 2013),Hubei,China,June 21-23,2013,Hubei:IEEE.org,2013.

    [18]

    HU X,LI S E,JIA Z,et al. Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles [J]. Energy,2014,64(1):953-960.

    [19]

    DUBARRY M,TRUCHOT C,LIAW B Y. Synthesize battery degradation modes via a diagnostic and prognostic model [J]. Journal of Power Sources,2012,219(1):204-216.

    [20]

    KASSEM M,BERNARD J,REVEL R,et al. Calendar aging of a graphite/LiFePO4 cell [J]. Journal of Power Sources,2012,208(1):296-305.

    [21]

    WENG C,CUI Y,SUN J,et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression [J]. Journal of Power Sources,2013,235(4):36-44.

    [22]

    HAN X,OUYANG M,LU L,et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle:Aging mechanism identification [J]. Journal of Power Sources,2014,251(1):38-54.

    [23]

    REZVANIZANIANI S M,LIU Z,CHEN Y,et al. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle(EV)safety and mobility [J]. Journal of Power Sources,2014,256(12):110-124.

图(5)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-29
  • 修回日期:  2019-08-08
  • 刊出日期:  2020-07-10

目录

    Rong HU

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回