• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

储能火电联合调频的容量优化配置研究

印佳敏 郑赟 杨劲

印佳敏,郑赟,杨劲.储能火电联合调频的容量优化配置研究[J].南方能源建设,2020,07(04):11-17. doi:  10.16516/j.gedi.issn2095-8676.2020.04.002
引用本文: 印佳敏,郑赟,杨劲.储能火电联合调频的容量优化配置研究[J].南方能源建设,2020,07(04):11-17. doi:  10.16516/j.gedi.issn2095-8676.2020.04.002
YIN Jiamin,ZHENG Yun,YANG Jin.Research on Capacity Optimization of Generator-storage Combined Frequency Regulation System[J].Southern Energy Construction,2020,07(04):11-17. doi:  10.16516/j.gedi.issn2095-8676.2020.04.002
Citation: YIN Jiamin,ZHENG Yun,YANG Jin.Research on Capacity Optimization of Generator-storage Combined Frequency Regulation System[J].Southern Energy Construction,2020,07(04):11-17. doi:  10.16516/j.gedi.issn2095-8676.2020.04.002

储能火电联合调频的容量优化配置研究

doi: 10.16516/j.gedi.issn2095-8676.2020.04.002
基金项目: 

中国能建广东院科技项目“分布式储能系统联合调频优化配置模型及方法研究” EX05131W

详细信息
    作者简介:

    印佳敏(通信作者)1982-,女,江苏南通人,中国能源建设集团广东省电力设计研究院有限公司高级工程师,清华大学动力工程及工程热物理博士,主要从事综合能源、储能、热力系统技术研究及咨询设计(e-mail)yinjiamin@gedi.com.cn

  • 中图分类号: TK01

Research on Capacity Optimization of Generator-storage Combined Frequency Regulation System

  • YIN Jiamin,ZHENG Yun,YANG Jin.Research on Capacity Optimization of Generator-storage Combined Frequency Regulation System[J].Southern Energy Construction,2020,07(04):11-17.
  • 摘要:   目的  为储能火电联合调频项目合理配置储能容量,建立联合调频的收益模型,提供储能功率选择的依据。  方法  基于广东某电厂机组的历史运行数据和市场出清价格,对机组和储能联合调频进行仿真计算,分析储能功率选择对联合调频性能和收益的影响。  结果  仿真结果表明:储能系统通过提升机组的调频性能和增加调频里程,大幅提升调频收益,且随着储能功率的增加,调频收益逐渐增加后趋于稳定;受机组性能差异和运行状况的影响,储能对调频性能和调频收益提升的程度不同。  结论  证实通过仿真计算确定储能容量是合理可行的,可为后续联合调频项目中储能容量优化提供参考。
  • 图  1  联合调频原理

    Fig.  1  Principle of generator-storage combined frequency regulation

    图  2  #2机组不同储能功率下的调节速率k1

    Fig.  2  Curves of regulation rate VS. battery power(#2 unit)

    图  3  #4机组不同储能功率下的调节速率k1

    Fig.  3  Curves of regulation rate VS. battery power(#4 unit)

    图  4  #2机组不同储能功率下的响应时间k2

    Fig.  4  Curves of response time VS. battery power(#2 unit)

    图  5  #4机组不同储能功率下的响应时间k2

    Fig.  5  Curves of response time VS. battery power(#4 unit)

    图  6  #2机组不同储能功率下的调节精度k3

    Fig.  6  Curves of adjustment accuracy VS. battery power(#2 unit)

    图  7  #4机组不同储能功率下的调节精度k3

    Fig.  7  Curves of adjustment accuracy VS. battery power(#4 unit)

    图  8  #2机组不同储能功率下的调节性能指标k

    Fig.  8  Curves of performance index k VS. battery power(#2 unit)

    图  9  #4机组不同储能功率下的调节性能指标k

    Fig.  9  Curves of performance index k VS. battery power(#4 unit)

    图  10  #2机组不同储能功率下的调频里程D

    Fig.  10  Curves of regulation mileage VS. battery power(#2 unit)

    图  11  #4机组不同储能功率下的调频里程D

    Fig.  11  Curves of regulation mileage VS. battery power(#4 unit)

    图  12  #2机组不同储能功率下的日调频收益

    Fig.  12  Curves of income VS. battery power(#2 unit)

    图  13  #4机组不同储能功率下的日调频收益

    Fig.  13  Curves of income VS. battery power(#4 unit)

    表  1  联合调频性能和收益汇总表

    Tab.  1.   Table of performance and income

    机组号储能容量调节性能k日调频收益R/元
    绝对值相对值/%绝对值相对值/%
    #29 MW(基准)2.3974 417
    10 MW2.42101.376 663103.0
    12 MW2.43101.778 791105.9
    #49 MW(基准)2.44103 163
    10 MW2.47101.2105 764102.5
    12 MW2.48101.6107 981104.7
    下载: 导出CSV
  • [1] 邵忠卫,李国良,刘文伟. 火电联合储能调频技术的研究与应用 [J]. 山西电力,2017(6):62-66.

    SHAOZ W,LIG L,LIUW W. Research and application of BESS-aided thermal power frequency-regulation technology [J]. Shanxi Electric Power,2017(6):62-66.
    [2] 张涛. 储能电池技术参与火电厂AGC调频的应用 [J]. 中国电业,2019(5): 94-95.

    ZHANGT.Application of energy storage battery technology in AGC frequency modulation of thermal power plant [J]. China Electric Power,2019(5): 94-95.
    [3] 徐国敬. 储能系统与火电机组联合调频的自动发电控制优化 [D]. 天津: 天津大学, 2018.

    XUG J.Automatic power generation control optimization of combined frequency modulation of energy storage system and thermal power unit [D]. Tianjin: Tianjin University, 2018.
    [4] 孙冰莹. 储能辅助火电机组AGC调频运行方法及容量配置研究 [D]. 北京: 华北电力大学, 2018.

    SunB Y. Research on AGC frequency modulation operation method and capacity configuration of energy storage auxiliary thermal power unit [D]. Beijing: North China Electric Power University, 2018.
    [5] 张平. 火电与电储能联合调频方法的研究 [J]. 通信电源技术,2018,35(10): 31-33.

    ZHANGP. Research on the combined FM method of thermal power and energy storage [J]. Telecom Power Technology, 2018, 35(10): 31-33.
    [6] 高海翔,董超,孟子杰,等. 机组-储能联合系统参与调频辅助服务市场的关键技术研究与实践 [J]. 广东电力,2020,33(6):46-52.

    GAOH X,DONGC,MENGZ J,et al. Key technologies and practice of generator-storage combination system participating in frequency regulation ancillary service markets [J]. Guangdong Electric Power,2020,33(6):46-52.
    [7] 牟春华,兀鹏越,孙钢虎,等. 火电机组与储能系统联合自动发电控制调频技术及应用 [J]. 热力发电,2018,47(5):29-34.

    MUC H,WUP Y,SUNG H,et al. AGC frequency modulation technology and application for combination of thermal power unit and energy storage system [J]. Thermal Power Generation,2018,47(5):29-34.
    [8] 刘强. 储能系统在火力发电厂联合调频应用[J]. 通信电源技术,2020,37(3):120-122+125.

    LIUQ. Application of energy storage system in joint frequency regulation of thermal power plant [J]. Telecom Power Technology,2020,37(3):120-122+125.
    [9] 王斐,梁涛. 储能系统辅助火电机组联合AGC调频技术的应用 [J]. 电工电气,2018(9):34-37.

    WANGF,LIANGT. Application of combined automatic gain control frequency modulation technology for energy storage system auxiliary thermal power unit [J]. Electrotechnics Electric,2018(9):34-37.
    [10] 孙钢虎,王小辉,陈远志,等. 储能联合发电机组调频经济效益分析 [J/OL]. 电源学报, 2020 , 18(4):151-156. http://kns.cnki.net/kcms/detail/12.1420.TM.20190528.1549.008.html. http://kns.cnki.net/kcms/detail/12.1420.TM.20190528.1549.008.html

    SUNG H,WANGX H,CHENY Z,et al. Research on economic benefits of frequency modulation for energy storage combined generating units [J/OL]. Journal of Power Supply, 2020, 18(4):151-156. http://kns.cnki.net/kcms/detail/12.1420.TM.20190528.1549.008.html. http://kns.cnki.net/kcms/detail/12.1420.TM.20190528.1549.008.html
    [11] 王琦. 储能火电联合调频的容量配置及收益预测研究 [J]. 现代信息科技,2019,3(16):43-45.

    WANGQ. Research on capacity allocation and revenue prediction of joint frequency modulation for energy storage and thermal power [J]. Modern Information Technology,2019,3(16):43-45.
    [12] 黄际元,刘博,李欣然,等. 储能电池参与电网快速调频的经济性分析 [J]. 电器与能效管理技术,2017(23):65-70.

    HUANGJ Y,LIUB,LIX R,et al. Economic analysis of energy storage participating in fast frequency regulation [J]. Low Voltage Apparatus,2017(23):65-70.
    [13] 李军徽,范兴凯,穆钢,等. 应用于电网调频的储能系统经济性分析 [J]. 全球能源互联网,2018,1(3):355-360.

    LIJ H,FANX K,MUG,et al. Economic analysis of energy storage applied to grid frequency regulation [J]. Journal of Global Energy Interconnection,2018,1(3):355-360.
    [14] 牟爱政,彭博伟,张连垚,等. 储能系统应用于火电厂调频经济性评价的研究 [J]. 上海电力学院学报,2019,35(5):479-485+492.

    MOUA Z,PENGB W,ZHANGL Y,et al. Study on application of energy storage system to economic evaluation of power plant frequency regulation [J]. Journal of Shanghai University of Electric Power,2019,35(5):479-485+492.
    [15] 饶宇飞,高泽,杨水丽,等. 大规模电池储能调频应用运行效益评估 [J]. 储能科学与技术,2020,9(6):1828-1836.

    RAOY F,GAOZ,YANGS L,et al. Operational benefit evaluation for frequency regulation application of large-scale battery energy storage [J]. Energy Storage Science and Technology,2020,9(6):1828-1836.
    [16] 王华卫,张平. 350 MW级火电机组与电储能联合调频系统设计研究 [J]. 电工技术,2019(6):61-63+117.

    WANGH W,ZHANGP. Design and research on joint frequency modulation system for 350 MW grade thermal power unit and energy storage [J]. Electric Engineering,2019(6): 61-63+117.
    [17] 王兴兴,孙建桥,陈明. 储能火电联合调频系统设计与研究 [J]. 华电技术,2020,42(4):72-76.

    WANGX X,SUNJ Q,CHENM. Design and research on energy storage and thermal power combined frequency modulation systems [J]. Huadian Technology,2020,42(4):72-76.
  • [1] 严小珊, 唐惠玲, 吴杰康, 周治廷, 龙泳丞, 冯国华.  基于MPC的光-储协同调频优化策略 . 南方能源建设, 2024, 11(2): 125-138. doi: 10.16516/j.ceec.2024.2.12
    [2] 张力, 刘海洋, 段德萱, 黄晶晶, 张炳成, 叶小盛, 徐展.  交能融合背景下的高速公路光储充一体化发展路线展望 . 南方能源建设, 2024, 11(5): 86-94. doi: 10.16516/j.ceec.2024.5.09
    [3] 林燕, 李斌, 罗浩东, 向魁, 朱光涛.  热核聚变发电厂储能系统运行模式研究 . 南方能源建设, 2024, 11(3): 110-116. doi: 10.16516/j.ceec.2024.3.12
    [4] 王志敏, 黄骞, 柳冠青, 周勇, 张楠, 李诚, 李水清.  适应新型电力系统的调峰火电机组空气预热器安全评估策略 . 南方能源建设, 2024, 11(6): 33-40. doi: 10.16516/j.ceec.2024.6.03
    [5] 丁秀香, 林伟, 陈昆灿, 谢会玲.  满足主变N-1的变电站储能定容方法及经济分析 . 南方能源建设, 2023, 10(2): 78-85. doi: 10.16516/j.gedi.issn2095-8676.2023.02.011
    [6] 陈竹, 谢胤喆, 李娜, 杨欣, 施天成, 丛昊.  新型电力系统下不同场景储能的应用研究 . 南方能源建设, 2023, 10(S1): 27-33. doi: 10.16516/j.gedi.issn2095-8676.2023.S1.004
    [7] 郭江涛, 陈烁, 曾瑞斌, 黄丽玲, 张一丰.  风电机组惯量响应与一次调频能力研究 . 南方能源建设, 2023, 10(4): 82-90. doi: 10.16516/j.gedi.issn2095-8676.2023.04.008
    [8] 陈雷, 文婷.  考虑调峰调频双重约束的储能规划方法研究 . 南方能源建设, 2023, 10(2): 62-70. doi: 10.16516/j.gedi.issn2095-8676.2023.02.009
    [9] 郑开云, 池捷成, 张学锋.  耦合抽水蓄能的压缩空气储能电站概念研究 . 南方能源建设, 2023, 10(2): 18-25. doi: 10.16516/j.gedi.issn2095-8676.2023.02.003
    [10] 王帆, 李宾斯, 夏同令, 彭敏, 汪少勇.  广东地区2×600 MW级燃煤机组磷酸铁锂电池储能辅助调频经济性研究 . 南方能源建设, 2023, 10(6): 71-77. doi: 10.16516/j.gedi.issn2095-8676.2023.06.008
    [11] 罗志斌, 孙潇, 孙翔, 林海周, 朱光涛.  氢能与储能耦合发展的机遇与挑战 . 南方能源建设, 2022, 9(4): 24-31. doi: 10.16516/j.gedi.issn2095-8676.2022.04.003
    [12] 梁展鹏, 向魁, 李华, 朱光涛.  CFETR聚变发电厂的储能技术适用性分析 . 南方能源建设, 2022, 9(2): 53-62. doi: 10.16516/j.gedi.issn2095-8676.2022.02.007
    [13] 袁春峰, 刘锴慧, 张帆, 杨浩, 孙晨阳, 魏书洲, 王金星.  火电机组一次调频技术研究进展综述 . 南方能源建设, 2022, 9(3): 1-8. doi: 10.16516/j.gedi.issn2095-8676.2022.03.001
    [14] 李峻, 祝培旺, 王辉, 仇晓龙.  基于高温熔盐储热的火电机组灵活性改造技术及其应用前景分析 . 南方能源建设, 2021, 8(3): 63-70. doi: 10.16516/j.gedi.issn2095-8676.2021.03.009
    [15] 李舒佳, 谢敏, 李建钊, 黄彬彬, 林盛振.  电能量—调频市场联合优化模式研究 . 南方能源建设, 2020, 7(3): 55-61. doi: 10.16516/j.gedi.issn2095-8676.2020.03.007
    [16] 高啸天, 匡俊, 楚攀, 孙克宁.  化学电源及其在储能领域的应用 . 南方能源建设, 2020, 7(4): 1-10. doi: 10.16516/j.gedi.issn2095-8676.2020.04.001
    [17] 张东辉, 徐文辉, 门锟, 张树卿, 卢嗣斌.  储能技术应用场景和发展关键问题 . 南方能源建设, 2019, 6(3): 1-5. doi: 10.16516/j.gedi.issn2095-8676.2019.03.001
    [18] 傅喻帅, 夏牡丹.  火电机组湿法脱硫系统自动化水平提升的策略与应用 . 南方能源建设, 2018, 5(S1): 25-28. doi: 10.16516/j.gedi.issn2095-8676.2018.S1.005
    [19] 欧卫海, 王立地.  火力发电厂机组APS监控关键技术研究 . 南方能源建设, 2015, 2(S1): 19-25. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.005
    [20] 王焕然.  一种新型压缩空气储能系统的理论分析 . 南方能源建设, 2015, 2(2): 15-19. doi: 10.16516/j.gedi.issn2095-8676.2015.02.003
  • 加载中
图(13) / 表 (1)
计量
  • 文章访问数:  1139
  • HTML全文浏览量:  221
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-16
  • 修回日期:  2020-10-12
  • 刊出日期:  2020-12-25

储能火电联合调频的容量优化配置研究

doi: 10.16516/j.gedi.issn2095-8676.2020.04.002
    基金项目:

    中国能建广东院科技项目“分布式储能系统联合调频优化配置模型及方法研究” EX05131W

    作者简介: 印佳敏(通信作者)1982-,女,江苏南通人,中国能源建设集团广东省电力设计研究院有限公司高级工程师,清华大学动力工程及工程热物理博士,主要从事综合能源、储能、热力系统技术研究及咨询设计(e-mail)yinjiamin@gedi.com.cn

  • 中图分类号: TK01

摘要:   目的  为储能火电联合调频项目合理配置储能容量,建立联合调频的收益模型,提供储能功率选择的依据。  方法  基于广东某电厂机组的历史运行数据和市场出清价格,对机组和储能联合调频进行仿真计算,分析储能功率选择对联合调频性能和收益的影响。  结果  仿真结果表明:储能系统通过提升机组的调频性能和增加调频里程,大幅提升调频收益,且随着储能功率的增加,调频收益逐渐增加后趋于稳定;受机组性能差异和运行状况的影响,储能对调频性能和调频收益提升的程度不同。  结论  证实通过仿真计算确定储能容量是合理可行的,可为后续联合调频项目中储能容量优化提供参考。

English Abstract

印佳敏,郑赟,杨劲.储能火电联合调频的容量优化配置研究[J].南方能源建设,2020,07(04):11-17. doi:  10.16516/j.gedi.issn2095-8676.2020.04.002
引用本文: 印佳敏,郑赟,杨劲.储能火电联合调频的容量优化配置研究[J].南方能源建设,2020,07(04):11-17. doi:  10.16516/j.gedi.issn2095-8676.2020.04.002
YIN Jiamin,ZHENG Yun,YANG Jin.Research on Capacity Optimization of Generator-storage Combined Frequency Regulation System[J].Southern Energy Construction,2020,07(04):11-17. doi:  10.16516/j.gedi.issn2095-8676.2020.04.002
Citation: YIN Jiamin,ZHENG Yun,YANG Jin.Research on Capacity Optimization of Generator-storage Combined Frequency Regulation System[J].Southern Energy Construction,2020,07(04):11-17. doi:  10.16516/j.gedi.issn2095-8676.2020.04.002
  • 近年来,随着风力发电以及光伏发电等新能源发电方式的不断并网,增加了电网系统的运行调控难度,电网对调频资源的需求也越来越高。同时,传统火电机组占比降低,电网可用的调频资源减少,调频容量不足的问题凸显。此外,由于传统火电机组的旋转惯性,对有功功率的调节响应速度较慢1-2,寻求新型调频手段辅助传统火电机组提升电网整体调频性能成为当前研究的热点3-4

    以广东为例,随着大批量海上风电接入,电网中风电装机容量不断增加,加上西电东送占比逐年增大,电网调频难度加剧。广东地区电源结构以大型燃煤机组为主,占总装机容量47.1%,调频依靠火电机组时调节任务繁重。燃煤机组长期承担繁重的调节任务,会造成发电机组设备磨损严重,增加燃料损耗,超净排放目标难以实现等一系列负面影响5-6。快速调频资源主要以联合循环电厂、抽蓄电厂和水电为主,其装机容量占全省装机容量30.4%,快速调节资源稀缺,调频的形势相对紧张。

    储能应用在调频领域,由于具备有功功率双向调节、响应速度快、调节精度高的特性,调频效果远好于常规发电机组。近几年来,在我国火电机组中采用电池储能系统联合进行调频,已经在工程中逐渐得到应用7-9。相关文献[10-15]对储能联合调频的经济效益进行了计算。

    虽然储能可以显著提高火电厂的AGC性能,带来调频收益的提升,但由于其成本较高,储能容量并不是越大越好。目前国内火电联合调频项目大多根据工程经验,按照1.5%~3.0%的机组容量配置储能16-17,区域电网对调频资源的实际需求考虑不足,也没有考虑到机组性能的差异对储能容量选型的影响。

    本文建立储能联合调频的收益模型,并以广东某电厂为研究对象,对机组和储能联合调频进行仿真计算,研究不同储能功率下的联合调频性能和调频收益,选择合适的储能功率,并与工程经验进行比较。

    • 图1所示,电网调度AGC指令下发到机组,储能系统同时获取该AGC指令,由于火电机组响应速度较慢(min级),储能系统利用自身响应速度快(s级)的特性先弥补短时间内机组出力与AGC指令间的功率差值。等机组响应跟上之后,储能系统出力可以逐渐降低,以确保储能系统和机组联合出力与AGC指令保持一致,并准备下一次AGC指令响应。

      图  1  联合调频原理

      Figure 1.  Principle of generator-storage combined frequency regulation

    • 根据《广东调频辅助服务市场交易规则(试行)》,广东调频市场补偿费用分为调频里程补偿和AGC容量补偿。发电单元日AGC补偿费用计算公式如下:

      R=R+RAGC ((1))
    • 中标发电单元在广东调频市场中提供调频服务可以获得相应的调频里程补偿。发电单元的日调频里程补偿计算公式如下:

      R=i=1n(Di×Qi×Ki) ((2))

      式中:n为每日调频市场总的交易周期数;Di为发电单元在第i个交易周期提供的调频里程(MW);Qi为第i个交易周期的里程计算价格(元/MW);Ki为发电单元在第i个交易周期的综合调频性能指标平均值。

    • 发电单元AGC容量为发电单元当前出力点在5分钟内向上可调容量与向下可调容量之和。发电单元日AGC容量补偿计算公式如下:

      RAGC=j=1m(Cj×Tj×s) ((3))

      式中:m为每日总调度时段数;Cj为发电单元在第j个调度时段的发电单元AGC容量(MW);Tj为发电单元在第j个调度时段的调频服务时长(h);s为AGC容量补偿标准(元/MWh)。

    • 调频里程是指发电单元响应AGC控制指令后结束时的实际出力值与响应指令时的出力值之差的绝对值。某时间段内的总调频里程为该时段内发电单元响应AGC控制指令的调频里程之和。总调频里程计算公式如下:

      D=j=1nDj ((4))

      式中:Dj为发电单元第j次的调频里程。

    • 综合调节性能指标指发电单元响应AGC控制指令的综合性能表现,计算公式如下:

      k=0.25×2×k1+k2+k3 ((5))

      式中:调节速率k1指发电单元响应AGC控制指令的速率;响应时间k2指发电单元响应AGC 控制指令的时间延迟;调节精度k3指发电单元机组响应AGC控制指令的精准度。

      k1= AGC  ((6))
      k2=1-(/5 min) ((7))
      k3=1- ((8))
    • 以广东某燃煤电厂#2机组和#4机组为储能联合调频改造对象,单机容量330 MW。考虑设置一套储能系统,储能单元同时接入#2机组和#4机组,采用一拖二方式运行,储能可在两台机组间切换,配合电厂的单机AGC运行模式。

      对电厂机组和储能系统分别建模,并基于机组7天(Day1~Day7)的实际历史运行数据和市场出清价格,对不同储能容量P(MW)进行联合调频仿真模拟运算。储能电池的放电功率按2C考虑,储能功率区间设置为机组容量的1%~5%。

    • 仿真结果如图2~图3所示,储能系统能大幅提升机组的k1值。随着储能功率的增加,调节速率k1几乎成比例增加,当储能功率增加到约9 MW以后,k1增加很少,基本维持在一个稳定水平。这是因为储能系统响应速度快,当收到AGC指令后,可以快速通过充、放电,迅速跟踪指令需求,远高于常规火电机组的调节速度。

      图  2  #2机组不同储能功率下的调节速率k1

      Figure 2.  Curves of regulation rate VS. battery power(#2 unit)

      图  3  #4机组不同储能功率下的调节速率k1

      Figure 3.  Curves of regulation rate VS. battery power(#4 unit)

    • 图4~图5所示,储能系统能小幅增加机组的k2值,但随着储能功率的继续增加,k2几乎不变。这是因为机组本身k2指标已较好,k2的提升空间较小,且仿真策略中为了电网的稳定,对储能的输出进行了速率限值。考虑到k2k值提升的贡献度只有25%,故储能系统用于提升k2的意义不大。

      图  4  #2机组不同储能功率下的响应时间k2

      Figure 4.  Curves of response time VS. battery power(#2 unit)

      图  5  #4机组不同储能功率下的响应时间k2

      Figure 5.  Curves of response time VS. battery power(#4 unit)

    • 图6~图7所示,储能系统对调节精度k3的影响不大,在部分情况下,甚至出现调节精度k3会随储能容量的增加而稍微降低。这是由于AGC精度计算算法以及储能运行策略导致,因为增加储能后会使机组调节速度增加,并较早结束调节,当调节结束后储能会退出运行,导致开始进行精度计算的时间提早,进而造成精度降低,若适当降低储能退出的门槛值,精度则会提高。

      图  6  #2机组不同储能功率下的调节精度k3

      Figure 6.  Curves of adjustment accuracy VS. battery power(#2 unit)

      图  7  #4机组不同储能功率下的调节精度k3

      Figure 7.  Curves of adjustment accuracy VS. battery power(#4 unit)

    • 仿真结果如图8~图9所示,储能系统能大幅提升机组的k值。随着储能功率的增加,k值逐渐增加,当储能功率增加到约9 MW以后,k值基本维持在一个稳定水平。这是由于调节速率k1k值计算的贡献度最大,达50%,因此k1的大幅提升必然带来k值的明显提高。同时,储能功率的增加对响应时间k2和调节精度k3的影响不大,且k2k3k值计算的贡献度本身就较小。

      图  8  #2机组不同储能功率下的调节性能指标k

      Figure 8.  Curves of performance index k VS. battery power(#2 unit)

      图  9  #4机组不同储能功率下的调节性能指标k

      Figure 9.  Curves of performance index k VS. battery power(#4 unit)

      以7天的仿真运行数据来看,按平均值计算,当储能功率为9 MW、10 MW和12 MW时,#2机组的k值可由1.01分别提升至2.39、2.42和2.43,#4机组的k值可由1.17分别提升至2.44、2.47和2.48。

    • 仿真结果如图10~图11所示,储能系统在一定程度上能增加机组的调频里程。随着储能功率的增加,D值逐渐增加,但增速放缓。这是由于储能联合调频后,不仅由于调节性能指标的提升,更容易在调频市场中中标,而且在同样中标的情况下,由于增加了储能,可以在响应AGC指令后结束时,减少实际出力和AGC指令的差值,也即增加调频里程。

      图  10  #2机组不同储能功率下的调频里程D

      Figure 10.  Curves of regulation mileage VS. battery power(#2 unit)

      图  11  #4机组不同储能功率下的调频里程D

      Figure 11.  Curves of regulation mileage VS. battery power(#4 unit)

      以7天的仿真运行数据来看,按平均值计算,当储能功率为9 MW、10 MW和12 MW时,#2机组的D值可由1.539 GW分别增加至2.223 GW、2.260 GW和2.317 GW,#4机组的D值可由2.074 GW分别增加至2.756 GW、2.792 GW和2.845 GW。

    • 仿真结果如图12~图13所示,储能系统能大幅提升机组日调频收益。随着储能功率的增加,日调频收益R逐渐增加,但增速放缓。

      图  12  #2机组不同储能功率下的日调频收益

      Figure 12.  Curves of income VS. battery power(#2 unit)

      图  13  #4机组不同储能功率下的日调频收益

      Figure 13.  Curves of income VS. battery power(#4 unit)

      以7天的仿真运行数据来看,按平均值计算,当储能功率为9 MW、10 MW和12 MW时,#2机组的R值可由22 148元增加至74 417元、76 663元和78 791元,分别提升236%、246%和256%,#4机组的R值可由37 243元增加至103 163元、105 764元和107 981元,分别提升177%、184%和190%。

    • 不同储能功率下联合调频的性能和收益见表1。与储能功率为9 MW相比,当储能功率为10 MW和12 MW时,日调频收益的提升很小。实际工程中,建议储能容量可按9 MW考虑,与联合调频项目经验按照3.0%的机组容量配置储能基本相符。

      表 1  联合调频性能和收益汇总表

      Table 1.  Table of performance and income

      机组号储能容量调节性能k日调频收益R/元
      绝对值相对值/%绝对值相对值/%
      #29 MW(基准)2.3974 417
      10 MW2.42101.376 663103.0
      12 MW2.43101.778 791105.9
      #49 MW(基准)2.44103 163
      10 MW2.47101.2105 764102.5
      12 MW2.48101.6107 981104.7

      此外,由表1图1~图13可见:

      1)对于不同的机组,即使处于同一调频控制区且机组容量相同,由于机组本身性能的差异,储能对机组性能提升的影响也不相同。

      2)由于每日的机组运行状况和电网调频需求不同,再加上调频市场中博弈的存在,对于同一台机组,日调频收益均不相同,储能对机组调频收益的提升也不相同。

    • 本文建立了储能联合调频的收益模型,并基于广东某电厂2台机组7天的历史运行数据,对机组和储能联合调频进行仿真计算,分析储能功率选择对联合调频性能的影响,并充分考虑调频市场出清价格的波动,以实际的市场出清价格进行调频收益计算,分析储能功率对调频收益的影响,仿真结果更具有参考意义。

      结果表明:

      1)储能系统能大幅提升机组的调频性能。随着储能功率的增加,调频性能的改善越来越明显,而后逐渐趋于稳定。

      2)储能系统可以增加机组的调频里程。随着储能功率的增加,调频里程逐渐增加,但增速不大且逐渐放缓。

      3)储能系统能大幅提升机组日调频收益。随着储能功率的增加,日调频收益逐渐增加,当储能功率增加到一定值后,日调频收益增速不明显。

      4)仿真结果证实了在储能联合调频项目中按照3.0%的机组容量配置储能基本是合理的,但同时也表明由于机组性能的差异和运行状况的不同,储能对机组性能和调频收益提升的影响不同。

      研究结果可以应用于后续储能联合调频项目的容量优化,通过基于实际的历史运行数据和市场数据,能够更准确地分析储能对机组联合调频性能和收益的影响,为后续储能联合调频项目合理选型提供参考。

  • 印佳敏,郑赟,杨劲.储能火电联合调频的容量优化配置研究[J].南方能源建设,2020,07(04):11-17.
  • 参考文献 (17)

    目录

      /

      返回文章
      返回