-
随着大规模分布式电源和电动汽车等负荷的接入[1],配电网运行状态更加复杂多变,传统终端的测量面临谐波、间谐波、噪声、阶跃等干扰,测量结果的准确性和快速性均面临巨大挑战[2-3]。
同步相量测量装置(Phasor Mearsurement Unit,PMU)已在电力系统发电和输电网中得到广泛应用[4-6],目前也正积极向配电网推广[7-9]。不同于传统的测控装置,PMU具备三个显著的特征:“快”、“准”和“全”。“快”指PMU需支持的上传速率和动态响应速度快;“准”指无论动态还是稳态情况,PMU均需满足严格的精度考核指标;“全”指PMU不仅可以测出幅值、频率和功率等,同时可测出全网的同步相角和功角,同时量测数据带全网统一的时标。正是由于这三个特征,PMU已不仅仅是其发明初期仅用来监测同步相角的装置,而已经成为电力系统不可或缺的工具。在向配电网进行推广的过程中,配电网同步相量测量装置与配网传统终端进行了融合,形成一种配电网新一代配电网微型同步相量测量装置(Distribution Micro Synchronous Phasor Measurement Unit,D-PMU),具有传统测控保护类终端的功能,同时具有快速性、准确性、可靠性和扩展性,应用领域也从监测推广到辨识、分析、控制和保护。
为在配电网推广应用此新技术,亟需设计D-PMU安装部署方案和典型应用场景的示范工程,本文将从D-PMU的技术原理及作用、系统及安装部署方案和工程案例分析三个部分进行介绍。
Research on the Design Scheme of Wide Area Synchronous Phasor Measurement System for Smart Distribution Grid
-
摘要:
目的 随着配电网大规模分布式电源和柔性负荷的接入,传统终端测量的准确性和速度难以满足实际需要,而采用新一代配电网微型同步相量测量装置(Distribution Micro Synchronous Phasor Measurement Unit, D-PMU)是解决上述问题的一个重要途径。 方法 首先,分析了D-PMU的工作原理和应用;其次,提出了配电网同步相量测量系统及安装部署方案;然后,根据示范区域的业务需求,提出配电网广域测量控制系统的体系架构及部署方案;最后,对D-PMU在智能配电网的应用进行了总结。 结果 示范建设成效验证了项目所研制的关键技术及设计方案的可行性和经济性。 结论 为D-PMU进一步与配网其他传统领域融合推广提供了丰富的工程经验。 -
关键词:
- 配电网微型同步相量单元 /
- 智能配电网 /
- 设计方案 /
- 示范工程案例分析
Abstract:Introduction With the access of large-scale distributed generation and flexible load in distribution network, the accuracy and speed of traditional terminal measurement are difficult to meet the actual needs, while the new generation of distribution micro synchronous phasor measurement unit (D-PMU) is an important way to solve the above problems. Method Firstly, the working principle and application of D-PMU were analyzed; secondly, the synchronized phasor measurement system of distribution network and its installation and deployment scheme were proposed; then, according to the requirements of the demonstration area, the architecture and deployment scheme of wide area measurement and control system of distribution network were proposed; finally, the application of D-PMU in intelligent distribution network was summarized. Results The effectiveness of the demonstration construction verifies the feasibility and economy of the key technology and design scheme developed by the project. Conclusion It provides rich engineering experience for the further integration and promotion of D-PMU with other traditional fields of distribution network. -
-
[1] 董逸超,王守相,闫秉科. 配电网分布式电源接纳能力评估方法与提升技术研究综述 [J]. 电网技术,2019,43(7):2258-2266. DONGY C,WANGS X,YANB K. Review on evaluation methods and improvement techniques of DG hosting capacity in distribution network [J]. Power System Technology,2019,43(7):2258-2266. [2] 于建成,迟福建,徐科,等.分布式电源接入对电网的影响分析 [J]. 电力系统及其自动化学报,2012,24(1):138-141. YUJ C,CHIF J,XUK,et al. Analysis of the impact of distributed generation on power grid [J]. Proceedings of the CSU-EPSA,2012,24(1):138-141. [3] 辛华. 低碳经济与电动汽车发展:趋势与对策 [J]. 开放导报,2009(5):31-35. XINH. Low carbon economy and electric vehicles:trends and policies [J]. China Opening Herald,2009(5):31-35. [4] 段刚,严亚勤,谢晓冬,等. 广域相量测量技术发展现状与展望 [J]. 电力系统自动化,2015,39(1):73-80. DUANG,YANY Q,XIEX D,et al. Development status quo and tendency of wide area phasor measuring technology [J]. Automation of Electric Power Systems,2015,39(1):73-80. [5] 张敏,沈健,侯明国,等. 相量测量单元实现次同步振荡在线辨识和告警的探讨 [J]. 电力系统自动化,2016,40(16):143-146+152. ZHANGM,SHENJ,HOUM G,et al. Discussion on on-line identification and waming of subsynchronous oscilation for phasor measuring unit [J]. Automation of Electric Power Systems,2016,40(16):143-146+152. [6] 朱利鹏,陆超,黄河,等. 基于广域时序数据挖掘策略的暂态电压稳定评估 [J]. 电网技术,2016,40(1):180-185. ZHUL P,LUC,HUANGH,et al. Wide-area time series data mining based transient voltage stability assessment [J]. Power System Technology,2016,40(1):180-185. [7] 邓丰,李鹏,曾祥君,等. 基于D-PMU的配电网故障选线和定位方法 [J].电力系统自动化,2020,44(19):160-167. DENGF,LIP,ZENGX J,et al. Fault line selection and location method based on synchrophasor measurement unit for distribution network [J]. Automation of Electric Power Systems,2020,44(19):160-167. [8] 王宾,孙华东,张道农. 配电网信息共享与同步相量测量应用技术评述 [J]. 中国电机工程学报,2015,35(增刊1):1-7. WANGB,SUNH D,ZHANGD N. Review on data sharing and synchronized phasor measurement technique with application in distribution systems [J]. Proceedings of the CSEE,2015,35(Supp.1):1-7. [9] LIUY,ZHANL,ZHANGY,et al. Wide-area-measurement system development at the distribution level:an FNET/grideye example [J]. IEEE Transactions on Power Delivery,2016,31(2):721-731. [10] 孔祥玉,袁枭枭,王玉婷,等. 配电网D-PMU优化配置方法和软件实现技术 [J]. 南方电网技术,2019,13(4):25-30. KONGX Y,YUANX X,WANGY T,et al. Optimal configuration method and software implementation technology for D-PMU in distribution network [J]. Southern Power System Technology,2019,13(4):25-30. [11] 刘灏,毕天姝,徐全,等. 配电网高精度同步相量测量技术方案与展望 [J]. 电力系统自动化,2020,44(18):23-29. LIUH,BIT S,XUQ,et al. Scheme and prospect of high-precision synchrophasor measurement technology for distribution network [J]. Automation of Electric Power Systems,2020,44(18):23-29. [12] 盛万兴,方恒福,沈玉兰,等. 考虑量测时延时基于3种数据融合的配网状态估计 [J]. 电力系统及其自动化学报,2019,31(12):108-115. SHENGW X,FANGH F,SHENY L,et al. Distribution state estimation based on fusion of three data sources considering measurement delay [J]. Automation of Electric Power Systems,2019,31(12):108-115. [13] 王澍,严正,孔祥瑞,等. 主动配电网多目标PMU最优配置 [J]. 电网技术,2019,43(3):833-840. WANGS,YANZ,KONGX R,et al. Multi-objective optimal placement of PMU in active distribution network [J]. Power System Technology,2019,43(3):833-840. [14] 张黎元,黄潇潇,张杰,等. 基于D-PMU量测信息的有源配电网故障诊断方法 [J]. 电力系统及其自动化学报,2019,31(10):145-150. ZHANGL Y,HUANGX X,ZHANGJ,et al. Fault diagnosis method for active power distribution network based on D-PMU measurement information [J]. Proceedings of the CSU-EPSA,2019,31(10):145-150. [15] 于力,焦在滨,王晓鹏,等. 基于PMU的中压配电网精确故障定位方法及关键技术 [J]. 电力系统自动化,2020,44(18):30-38. YUL,JIAOZ B,WANGX P,et al. Accurate fault location scheme and key technology of medium-voltage distribution network with synchrophasor measurement units [J]. Automation of Electric Power Systems,2020,44(18):30-38. [16] 徐箭,廖思阳,魏聪颖,等. 基于广域量测信息的配电网协调控制技术展望 [J]. 电力系统自动化,2020,44(18):12-22. XUJ,LIAOS Y,WEIC Y,et al. Prospect of coordinated control technology in distribution network based on wide-area measurement information [J]. Automation of Electric Power Systems,2020,44(18):12-22.