• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

700 MW机组调频辅助服务控制系统优化提升

李强

李强.700 MW机组调频辅助服务控制系统优化提升[J].南方能源建设,2021,08(03):114-121. doi:  10.16516/j.gedi.issn2095-8676.2021.03.017
引用本文: 李强.700 MW机组调频辅助服务控制系统优化提升[J].南方能源建设,2021,08(03):114-121. doi:  10.16516/j.gedi.issn2095-8676.2021.03.017
LI Qiang.Optimization and Improvement of Frequency Modulation Auxiliary Service Control System for the 700 MW Unit[J].Southern Energy Construction,2021,08(03):114-121. doi:  10.16516/j.gedi.issn2095-8676.2021.03.017
Citation: LI Qiang.Optimization and Improvement of Frequency Modulation Auxiliary Service Control System for the 700 MW Unit[J].Southern Energy Construction,2021,08(03):114-121. doi:  10.16516/j.gedi.issn2095-8676.2021.03.017

700 MW机组调频辅助服务控制系统优化提升

doi: 10.16516/j.gedi.issn2095-8676.2021.03.017
基金项目: 

广东省能源集团珠海发电厂调频辅助服务控制系统改造项目 ZHP-PW-191016

详细信息
    作者简介:

    李强(通信作者)1982-,男,广东梅州人,工程师,广东工业大学计算机专业,主要从事发电厂热工自动化检修工作(e-mail)lqxn2000@qq.com

  • 中图分类号: TM611

Optimization and Improvement of Frequency Modulation Auxiliary Service Control System for the 700 MW Unit

  • LI Qiang.Optimization and Improvement of Frequency Modulation Auxiliary Service Control System for the 700 MW Unit[J].Southern Energy Construction,2021,08(03):114-121.
  • 摘要:   目的  珠海发电厂两台700 MW机组的DCS系统采用日本三菱的DIASYS Netmation分散控制系统,机组采用定-滑-定的变压运行方式。目前投用AGC方式下变负荷速率偏低、负荷精度控制性能较差,调频响应情况较差,汽压汽温等主要参数波动大,调节品质差,不利于机组的安全稳定运行。  方法  通过控制方式建模,结合试验数据,得出系统设计方向。在“先控系统”实时优化控制软件包的基础构架上,针对性设计基于先进控制技术的新型AGC控制、一次调频控制、机组协调控制(CCS)、主汽温及再热器温度控制方案、通过仿真系统的模拟试验,确定各控制回路的原始参数。  结果  该项目实施后,调频辅助服务外挂先控系统与主机DCS系统实现无扰切换,综合调频性能显著提高。  结论  采用外挂先进控制系统实现优化控制策略后,大大提高了机组AGC综合调频性能,达到了预期目标。采用外挂先进控制系统,机组负荷率大幅提高、调频响应时间及精度都得到了大幅提高,总体调频性能提升显著,为机组参与调频市场竞争打下了良好基础。
  • 图  1  外挂系统硬件配置图

    Fig.  1  Hardware configuration of plug-in system

    图  2  控制器构造示意图

    Fig.  2  Schematic diagram of controller structure

    图  3  锅炉主控先控原理图

    Fig.  3  Schematic diagram of master and advanced control of the boiler

    图  4  汽机主控先控原理图

    Fig.  4  Schematic diagram of master and advanced control of the turbine

    图  5  过热汽温先控原理图

    Fig.  5  Schematic diagram of temperature advanced control for super heat steam

    图  6  再热汽温微量喷水先控原理图

    Fig.  6  Schematic diagram of spray water advanced control for reheat steam

    图  7  先控回路的集成化封装图

    Fig.  7  Integrated package diagram of the advanced control circuit

    图  8  燃料量扰动特性

    Fig.  8  Characteristics of fuel flow disturbance

    图  9  一次风压扰动特性

    Fig.  9  Characteristics of primary air pressure disturbance

    图  10  给水流量特性

    Fig.  10  Characteristics of feed water flow

    图  11  再热汽燃烧器摆角特性

    Fig.  11  Characteristics of reheat steam burner tilt

    图  12  减温水门开度-流量特性

    Fig.  12  Opening and flow characteristics of the spray water valve

    图  13  减温水流量-被调汽温及特性

    Fig.  13  Characteristics of spray water flow and regulated steam temperature

    图  14  连续升负荷(300~650 MW)控制过程记录曲线

    Fig.  14  Curve of continuous load increase (300~650 MW) control process

    图  15  连续降负荷(650~300 MW)控制过程记录曲线

    Fig.  15  Curve of continuous load reduction (650~300 MW) control process

    图  16  调频模式变负荷(400~480 MW)控制记录过程曲线

    Fig.  16  Curve of frequency modulation mode variable load (400~480MW) control process

    表  1  综合调频性能统计

    Tab.  1.   Statistics of integrated frequency modulation performance

    指标类型变负荷试验动态指标稳态指标
    K小时均值1.25~1.46
    变负荷速率/% Pe/min2%(300~700 MW)
    负荷响应纯延迟时间/s10 s
    负荷偏差/% Pe±0.3%
    主汽压力偏差/MPa±0.4±0.2
    主汽温度/℃可调±6/不可调±10*可调±3/不可调±4
    再热汽温度/℃可调±8/不可调±12可调±3/不可调±8
    下载: 导出CSV
  • [1] 仇 进,吴继平,滕贤亮,等. 调频辅助服务市场环境下频率控制技术研究 [J]. 电力工程技术,2018,37(2):1-7.

    QIUJ,WUJ P,TENGX L,et al. Research on frequency control technology in the market environment of frequency modulation auxiliary service [J]. Power Engineering Technology,2018,37(2):1-7.
    [2] 李舒佳,谢敏,李建钊,等. 电能量-调频市场联合优化模式研究 [J]. 南方能源建设,2020,7(3):55-61.

    LIS J,XIEM,LIJ Z,et al. Study on the joint optimization mode of electric energy and regulation market [J]. Southern Energy Construction,2020,7(3):55-61.
    [3] 易仕敏,陈青松,文福拴,等. 发电厂调节性能考核的新方法 [J]. 电力系统自动化,2009(17):96-100.

    YIS M,CHENQ S,WENF S,et al. A new method for regulator performance assessment of generation units [J]. Automation of Electric Power Systems,2009(17):96-100.
    [4] 李明,焦丰顺,任畅翔,等. 新一轮电改下电力辅助服务市场机制及储能参与辅助服务的经济性研究 [J]. 南方能源建设,2019,6(3):132-138.

    LIM,JIAOF S,RENC X,et al. China’s power auxiliary service market mechanism and the economics of energy storage system participating in auxiliary services [J]. Southern Energy Construction,2019,6(3):132-138.
    [5] 陈中飞,荆朝霞,陈达鹏,等. 美国调频辅助服务市场的调频补偿机制分析 [J]. 电力系统自动化,2017,42(12):1-10.

    CHENZ F,JINGZ X,CHEND P,et al. Analysis of frequency modulation compensation mechanism in frequency modulation ancilary service market of United States [J]. Automation of Electric Power Systems,2017,42(12):1-10.
    [6] 沈丛奇,归一数,程际云,等. 快动缓回一次调频策略 [J]. 电力系统自动化,2015,39(13):158-162.

    SHENC Q,GUIY S,CHENGJ Y,et al. A primary frequency regulation control strategy with fast-moving and delayed-returning [J]. Technology Automation of Electric Power Systems,2015,39(13):158-162.
    [7] 陈晔,陈雨果,刘文涛,等. 南方(以广东起步) 电力辅助服务市场发展展望 [J]. 南方电网技术,2018,12(12):55-63.

    CHENY,CHENY G,LIUW T,et al. Prospect for the development of power ancillary service market in Southern China(starting from Guangdong) [J]. Southern Power System Technology,2018,12(12):55-63.
    [8] 李军,黄卫剑,万文军,等. 一种新型反馈控制器的研究与应用 [J]. 控制理论与应用,2020,37(2):411-422.

    LIJ,HUANGW J,WANW J,et al. Research and application of a novel feedback controller [J]. Control Theory and Applications,2020,37(2):411-422.
    [9] 刘晓强,王西田. 考虑主蒸汽压力变化的机组一次调频动态特性 [J]. 热能动力工程,2008,23(2):140-143+214.

    LIUX Q,WANGX T. Dynamic characteristics of the primary frequency modulation of a turbo-generator under a due consideration of main steam pressure variation [J]. Journal of Engineering for Thermal Energy and Power,2008,23(2):140-143+214.
    [10] 马鸿杰,苏凡,沈丛奇,等. 发电机组一次调频性能在线测试功能的开发与实施 [J]. 华东电力,2012,40(8):1420-1423.

    MAH J,SUF,SHENC Q,et al. Online testing function development and implementation for generator primary frequency regulation performance [J]. East China Electric Power,2012,40(8):1420-1423.
    [11] 徐春雷,徐瑞,仇晨光,等. 发电机组一次调频在线测试与AGC性能考核系统设计 [J]. 电力工程技术,2017,36(3):1-6.

    XUC L,XUR,CHOUC G,et al. On line test of generator primary frequency regulation and design of AGC performance evaluation system [J]. Power Engineering Technology,2017,36(3):1-6.
    [12] 宋栋. 新电改下我国辅助服务市场机制设计研究 [D].北京:华北电力大学(北京),2018.

    SONGD. Research on the mechanism mesign of China's ancillary services market under the new electric power reform [D]. Beijing: North China Electric Power University (Beijing), 2018.
    [13] 国家能源局南方监管局. 广东调频辅助服务市场交易规则(试行) [S]. 广州:国家能源局南方监管局,2018.

    South China Energy Regulatory Office of National Energy Administration. Guangdong FM auxiliary service market trading rules(Trial) [S]. Guangzhou:South China Energy Regulatory Office of National Energy,2018.
    [14] 刘晓强,王西田. 考虑主蒸汽压力变化的机组一次调频动态特性 [J]. 热能动力工程,2008 (2):140-143+214.

    LIUX Q,WANGX T. Dynamic characteristics of the primary frequency modulation of a turbo-generator under a due consideration of main steam pressure variation [J]. Journal of Engineering for Thermal Energy and Power,2008(2):140-143+214.
    [15] 杨建华. 华中电网一次调频考核系统的研究与开发 [J].电力系统自动化,2008 (9):96-99.

    YANGJ H. Research and development of assessment system of primary frequency regulation in central China power grid [J]. Automation of Electric Power Systems,2008(9):96-99.
  • [1] 刘金超, 王童生, 林耀祖, 张恒, 沙睿.  基于FSS对二次侧非能动余热排出系统的验证 . 南方能源建设, 2022, 9(2): 95-100. doi: 10.16516/j.gedi.issn2095-8676.2022.02.013
    [2] 袁春峰, 刘锴慧, 张帆, 杨浩, 孙晨阳, 魏书洲, 王金星.  火电机组一次调频技术研究进展综述 . 南方能源建设, 2022, (): 1-9. doi: 10.16516/j.gedi.issn2095-8676.2022.03.001
    [3] 闫琪, 杨源.  海上换流站智能辅助控制系统方案设计 . 南方能源建设, 2021, 8(S1): 70-74. doi: 10.16516/j.gedi.issn2095-8676.2021.S1.011
    [4] 林侃, 梁石, 刘宇穗, 王晓雄.  双机回热系统小汽机仪控设计及控制策略研究 . 南方能源建设, 2021, 8(4): 66-72. doi: 10.16516/j.gedi.issn2095-8676.2021.04.009
    [5] 李维聪, 秦桐, 柯察今.  安全仪表系统在二次再热机组的应用研究 . 南方能源建设, 2020, 7(4): 107-112. doi: 10.16516/j.gedi.issn2095-8676.2020.04.017
    [6] 陈酌灼, 张梦清, 茹春平.  基于微服务的电力信息系统架构研究与设计 . 南方能源建设, 2020, 7(S2): 18-24. doi: 10.16516/j.gedi.issn2095-8676.2020.S2.003
    [7] 蔡利敏, 何叶, 张霆均, 吴巧变, 刘国华.  风光储多能互补电源集控系统设计 . 南方能源建设, 2020, 7(S2): 62-67. doi: 10.16516/j.gedi.issn2095-8676.2020.S2.010
    [8] 印佳敏, 郑赟, 杨劲.  储能火电联合调频的容量优化配置研究 . 南方能源建设, 2020, 7(4): 11-17. doi: 10.16516/j.gedi.issn2095-8676.2020.04.002
    [9] 李舒佳, 谢敏, 李建钊, 黄彬彬, 林盛振.  电能量—调频市场联合优化模式研究 . 南方能源建设, 2020, 7(3): 55-61. doi: 10.16516/j.gedi.issn2095-8676.2020.03.007
    [10] 张颖媛, 杨文, 李怀良.  区域综合能源管控与服务管理系统设计与应用 . 南方能源建设, 2020, 7(1): 21-26. doi: 10.16516/j.gedi.issn2095-8676.2020.01.003
    [11] 张振, 杨源, 阳熹.  海上风电机组辅助监控系统方案设计 . 南方能源建设, 2019, 6(1): 49-54. doi: 10.16516/j.gedi.issn2095-8676.2019.01.009
    [12] 李明, 焦丰顺, 任畅翔, 赵瑞.  新一轮电改下电力辅助服务市场机制及储能参与辅助服务的经济性研究 . 南方能源建设, 2019, 6(3): 132-138. doi: 10.16516/j.gedi.issn2095-8676.2019.03.022
    [13] 范晓梅.  核电站厂区实验室辅助工艺系统设计浅析 . 南方能源建设, 2018, 5(S1): 117-122. doi: 10.16516/j.gedi.issn2095-8676.2018.S1.021
    [14] 董云龙, 胡兆庆, 田杰, 李海英.  多端柔性直流控制保护系统架构和策略 . 南方能源建设, 2016, 3(2): 21-26. doi: 10.16516/j.gedi.issn2095-8676.2016.02.004
    [15] 陈喜鹏, 蔡汉生, 李锐海, 李哲, 陈绍东.  4次雷电流实测与雷电定位系统观测的比较分析 . 南方能源建设, 2016, 3(2): 72-76. doi: 10.16516/j.gedi.issn2095-8676.2016.02.014
    [16] 翟笃庆, 李常, 吕学山, 曾一, 韩春晖.  微网控制系统架构及控制方式研究 . 南方能源建设, 2016, 3(2): 113-117. doi: 10.16516/j.gedi.issn2095-8676.2016.02.022
    [17] 王延海, 刘述军, 朱东升.  统一潮流控制器工程中火灾报警系统的设计与应用 . 南方能源建设, 2016, 3(2): 102-106,112. doi: 10.16516/j.gedi.issn2095-8676.2016.02.020
    [18] 罗颖坚.  辅助车间控制网络结构与监控方式的优化研究 . 南方能源建设, 2015, 2(S1): 143-146,177. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.032
    [19] 岳增坤, 杨帆.  基于换流站的智能辅助控制系统研究 . 南方能源建设, 2015, 2(3): 118-121. doi: 10.16516/j.gedi.issn2095-8676.2015.03.023
    [20] 刘志文, 孙浩, 张磊, 王海华, 徐飞.  面向园区型微电网的一体化控制系统 . 南方能源建设, 2014, 1(1): 25-29. doi: 10.16516/j.gedi.issn2095-8676.2014.01.004
  • 加载中
图(16) / 表 (1)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  33
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 修回日期:  2021-05-06
  • 刊出日期:  2021-09-25

700 MW机组调频辅助服务控制系统优化提升

doi: 10.16516/j.gedi.issn2095-8676.2021.03.017
    基金项目:

    广东省能源集团珠海发电厂调频辅助服务控制系统改造项目 ZHP-PW-191016

    作者简介:

    李强(通信作者)1982-,男,广东梅州人,工程师,广东工业大学计算机专业,主要从事发电厂热工自动化检修工作(e-mail)lqxn2000@qq.com

  • 李强.700 MW机组调频辅助服务控制系统优化提升[J].南方能源建设,2021,08(03):114-121.
  • 中图分类号: TM611

摘要:   目的  珠海发电厂两台700 MW机组的DCS系统采用日本三菱的DIASYS Netmation分散控制系统,机组采用定-滑-定的变压运行方式。目前投用AGC方式下变负荷速率偏低、负荷精度控制性能较差,调频响应情况较差,汽压汽温等主要参数波动大,调节品质差,不利于机组的安全稳定运行。  方法  通过控制方式建模,结合试验数据,得出系统设计方向。在“先控系统”实时优化控制软件包的基础构架上,针对性设计基于先进控制技术的新型AGC控制、一次调频控制、机组协调控制(CCS)、主汽温及再热器温度控制方案、通过仿真系统的模拟试验,确定各控制回路的原始参数。  结果  该项目实施后,调频辅助服务外挂先控系统与主机DCS系统实现无扰切换,综合调频性能显著提高。  结论  采用外挂先进控制系统实现优化控制策略后,大大提高了机组AGC综合调频性能,达到了预期目标。采用外挂先进控制系统,机组负荷率大幅提高、调频响应时间及精度都得到了大幅提高,总体调频性能提升显著,为机组参与调频市场竞争打下了良好基础。

English Abstract

李强.700 MW机组调频辅助服务控制系统优化提升[J].南方能源建设,2021,08(03):114-121. doi:  10.16516/j.gedi.issn2095-8676.2021.03.017
引用本文: 李强.700 MW机组调频辅助服务控制系统优化提升[J].南方能源建设,2021,08(03):114-121. doi:  10.16516/j.gedi.issn2095-8676.2021.03.017
LI Qiang.Optimization and Improvement of Frequency Modulation Auxiliary Service Control System for the 700 MW Unit[J].Southern Energy Construction,2021,08(03):114-121. doi:  10.16516/j.gedi.issn2095-8676.2021.03.017
Citation: LI Qiang.Optimization and Improvement of Frequency Modulation Auxiliary Service Control System for the 700 MW Unit[J].Southern Energy Construction,2021,08(03):114-121. doi:  10.16516/j.gedi.issn2095-8676.2021.03.017
  • 广东省能源集团珠海发电厂两台700 MW机组,DCS系统实现的功能包括数据采集系统(DAS)、模拟量控制 (MCS)、顺序控制(SCS)、锅炉炉膛安全监控 (FSSS)、汽机旁路控制 (BPC)等,机组在投用AGC方式下存在变负荷速率偏低、负荷精度控制性能较差,一次调频响应情况较差,汽温汽压等主要数据偏离设定值较大,不利于机组安全稳定运行,且机组综合调频性能指标K值水平偏低。随着我国调频辅助服务市场的建立,由于珠海发电厂两台机组综合调频性能指标K值偏低,无法成为电网中标机组,经济损失巨大,所以需要设计一种适应调频市场环境的控制策略,保证控制系统既能满足电网频率控制需要,又能适应调频服务市场化的特性要求1-3。由于珠海发电厂DCS系统采用三菱公司提供的DIASYS Netmation分散控制系统,该系统在线修改逻辑存在重大安全风险,所以根据珠海发电厂实际情况,在不改变DCS系统的原有控制功能的情况下,设计独立于DCS控制系统的专用第三方优化控制系统(PLC),并采用先进的控制技术(预测控制、模糊控制等),在机组300~700 MW负荷段来实现机组的AGC控制、一次调频、协调控制、主汽压控制、主汽温控制、再热汽温控制的等控制系统的功能优化,从而全面提高机组AGC控制、机组综合调频性能指标K值和运行参数稳定性4

    • 采用外接的先控系统实现控制系统优化,对机组CCS控制系统及相关子系统进行相应的优化和机组升降负荷试验,实现机组风、煤、汽温和机炉协调的自动控制,提高机组AGC负荷响应能力,提高在调频辅助市场环境下的机组响应特性和机组综合调频性能指标K值,使机组的调频辅助服务综合能力排位在同类机组中处于领先水平。

    • 目前,珠海发电厂DCS系统各控制回路采用的是PID控制器为基础的控制方式,该方式属于事后控制方式,控制效果欠佳。为了提高机组的机组负荷、主汽压力、汽包水位、主蒸汽温度、再热汽温度等的控制品质,采用一个外接PLC系统,将各控制回路的控制策略封装于此,通过专用通讯卡件与DCS进行数据交互。主要控制硬件系统设计示意图如下:

      图1所示,外挂系统与主机DCS系统采用标准的RS232、RS485/422连接方式,使用MODBUS通讯协议,还需要从外挂系统引一根RJ45网线到工程师站,连接上位机,方便调试和收集历史数据。

      图  1  外挂系统硬件配置图

      Figure 1.  Hardware configuration of plug-in system

      通讯卡起到桥梁作用,将不同控制系统之间的信号进行有效交互,从DCS系统中采集相关信号至外挂系统,经过外挂系统中的先进控制策略,输出相应的模拟量信号去控制现场设备。

    • 该先进控制系统主要包括BM、TM的控制,以及一二级减温水和再热器减温水的控制,各个先控回路采用集成化封装,便于系统的维护5-7。各回路主要采用多种算法相结合的新型先进控制器APC-PID。

      先进控制器APC-PID内部原理如图2(a)所示,通过一种近似滑动窗滤波器(Approximate sliding window filter,ASWF)可构造出高性能积分器,仿真试验证明该积分器具有比常规积分器更高的效率8

      图  2  控制器构造示意图

      Figure 2.  Schematic diagram of controller structure

      通过超前观测可以提前获取系统响应的信息,常见的超前观测形式有:D、PD、相位超前校正等。图2(b)所示为具有高相位超前效率的高性能超前观测器(HPLO)。通过一种高增益PI(High gain PI,HGPI)控制器,实现了ASWF的逆变换。对逆变换的输出进行1阶滤波,得到HPLO。

      在高性能PI控制器(HPPI)和高性能超前观测器(HPLO)的基础上,构造出一种先进控制器(APC-PID),如图2(c)所示。

      图  3  锅炉主控先控原理图

      Figure 3.  Schematic diagram of master and advanced control of the boiler

      图  4  汽机主控先控原理图

      Figure 4.  Schematic diagram of master and advanced control of the turbine

      搭建好先进控制器(APC-PID)后,再使其与DCS系统中的锅炉主控、汽机主控、过热器再热器温控制等控制回路配合,实现DCS系统各控制回路的优化控制。各回路典型原理参见图3图7

      图  5  过热汽温先控原理图

      Figure 5.  Schematic diagram of temperature advanced control for super heat steam

      图  6  再热汽温微量喷水先控原理图

      Figure 6.  Schematic diagram of spray water advanced control for reheat steam

      图  7  先控回路的集成化封装图

      Figure 7.  Integrated package diagram of the advanced control circuit

    • 为了快速、准确整定控制系统相关控制参数,分别在40%~50%Pe、60%~70%Pe、80%~90%Pe负荷段(低、中、高负荷)进行以下控制对象特性测试。

    • 图  8  燃料量扰动特性

      Figure 8.  Characteristics of fuel flow disturbance

    • 图  9  一次风压扰动特性

      Figure 9.  Characteristics of primary air pressure disturbance

    • 图  10  给水流量特性

      Figure 10.  Characteristics of feed water flow

    • 图  11  再热汽燃烧器摆角特性

      Figure 11.  Characteristics of reheat steam burner tilt

    • 图  12  减温水门开度-流量特性

      Figure 12.  Opening and flow characteristics of the spray water valve

      6)减温水流量-被调汽温及特性,如图13所示。

      图  13  减温水流量-被调汽温及特性

      Figure 13.  Characteristics of spray water flow and regulated steam temperature

    • 完成外挂先控控制系统的硬件实施和通讯接口后,根据控制对象特定测定,将各控制回路建模所得数据置于先控系统中,设定各控制回路在相关负荷段下进行运行,检测先控系统的调节品质,根据现场实际工况,进一步完善各控制回路相关参数,使其达到最优控制状态9-11

      计算机组性能的综合调频指标K12-13

      K=0.25×(2×k1+k2+k3) ((1))

      式中:k1为调节速率指标;k2为响应时间指标;k3为调节精度指标。

      调节品质及目标均以以上公式中的参数最优化为标准。

    • 投入先进控制系统,在400~700 MW负荷范围内,机组的综合调频性能指标K的值在1.0以上。若综合调频性能指标K低于1.0,则调整相关控制参数,保证综合调频性能指标K不低于1.0。

      机组在调频模式下或AGC调峰模式下,在400~700 MW负荷范围内,机组相关运行参数平稳,控制偏差满足《火力发电厂模拟量控制系统在线验收测试规程(DL/T 657—2015)》要求14-15,如主蒸汽压力、主蒸汽温度、再热汽蒸汽温度、锅炉壁温、炉膛负压、氧量等参数。若相关运行参数无法满足要求,优化调整相关控制参数和控制策略,直到相关运行参数满足要求为止。

    • 1)图14中,该机组的负荷从300 MW开始,逐次升负荷到650 MW,负荷率设定为14 MW/min,升负荷过程中有启动2台磨煤机的操作。

      图  14  连续升负荷(300~650 MW)控制过程记录曲线

      Figure 14.  Curve of continuous load increase (300~650 MW) control process

      2)各次升负荷过程中,机组负荷控制非常平稳,实际负荷与负荷设定值几乎重叠。

      3)主蒸汽压力控制平稳,最大偏差0.53 MPa。

      4)主汽温度控制平稳,A侧主汽温度(SP=535 ℃)最低526 ℃,最高545 ℃。B侧主汽温度(SP=535 ℃)最低525 ℃,最高545 ℃。

    • 1)图15中,该机组进行高负荷速率下连续降负荷(650~300 MW)试验,降负荷过程中有停止2台磨煤机的操作。

      图  15  连续降负荷(650~300 MW)控制过程记录曲线

      Figure 15.  Curve of continuous load reduction (650~300 MW) control process

      2)各次降负荷过程中,机组各参数运行稳定,机组负荷设定值与机组实际负荷跟随平稳且响应及时,负荷机组调频性能相关要求。彻底解决了原DCS控制系统主蒸汽压力波动大的问题,对主蒸汽温度的稳定也起到了较大的改善作用。

      3)主汽压力控制平稳,最大偏差0.54 MPa。

      4)主汽温度控制平稳,A侧主汽温度(SP=536 ℃)最低525 ℃,最高547 ℃。B侧主汽温度(SP=532 ℃)最低524 ℃,最高540 ℃。

    • K值分别为1.4、1.26、1.45、1.46,均值达到1.39)

      1)图16中,2020年07月02日 3时~7时(4小时),机组在AGC辅助调频模式下变负荷,机组负荷在400~480 MW范围内,根据电网频率偏差反复调节变化,负荷率设定为14 MW/min。

      图  16  调频模式变负荷(400~480 MW)控制记录过程曲线

      Figure 16.  Curve of frequency modulation mode variable load (400~480MW) control process

      2)机组AGC辅助调频模式下,各次升/降负荷过程中,高负荷变化速率下,各相关主要参数运行稳定,响应及时。

      3)机组AGC辅助调频模式下,主汽压力控制平稳,最大偏差0.60 MPa。

      4)机组AGC辅助调频模式下,主汽温度控制平稳,A侧主汽温度最低529 ℃,最高550 ℃。B侧主汽温度最低528 ℃,最高543 ℃。

    • 机组调频性能指标如表1所示,综合调频K值的小时均值在1.25~1.46之间,平均达到1.34,且每天24 h连续中标。调频综合性能超出预期。

      表 1  综合调频性能统计

      Table 1.  Statistics of integrated frequency modulation performance

      指标类型变负荷试验动态指标稳态指标
      K小时均值1.25~1.46
      变负荷速率/% Pe/min2%(300~700 MW)
      负荷响应纯延迟时间/s10 s
      负荷偏差/% Pe±0.3%
      主汽压力偏差/MPa±0.4±0.2
      主汽温度/℃可调±6/不可调±10*可调±3/不可调±4
      再热汽温度/℃可调±8/不可调±12可调±3/不可调±8

      根据机组实际调频辅助服务的运行结果,满足以下各项指标要求:

      1)机组实际AGC合格率在90%以上。

      2)单机综合调节指标满足以下要求:正常运行期间的综合调频性能指标K值不小于0.9。机组实际K值达到1.25~1.46,满足要求。

      3)在CCS方式下,300~700 MW负荷范围内,各被调参数动静态指标如下:

      在一次设备正常调节范围内,各被调参数动静态指标满足机组相关运行参数平稳要求。

    • 为提高机组的机组负荷、主汽压力、汽包水位、主蒸汽温度、再热汽温度等的调节性能,对协调、汽温等控制回路采用先进控制策略而创新使用的外挂先进控制系统与DCS系统协同控制方式,不仅大大提高了机组AGC综合调频性能,而且再热汽温、过热汽温度及主汽压力控制等控制回路在同等负荷升速率下,较原DCS系统控制更为准确及稳定,达到了优化机组调频性能,优化机组控制回路的预期目标。采用该外挂先控系统,能实现高负荷变化速率下,机组各项主要指标稳定,机组调频响应时间及精度均得到大幅提高,机组综合调频性能K值由原来的0.9~0.95,提升到1.25~1.46,AGC综合调频性能指标明显提升,为机组储能调频获得竞争优势打下了良好基础。

参考文献 (15)

目录

    /

    返回文章
    返回