-
核电厂是和平利用原子能的大型能源工业设施,因其发电高效、成本低且无空气污染等原因被很多国家所应用。核安全是政府、社会和核能界高度关注的问题,这就使核电厂的安全性至关重要。这种绝对安全性的要求贯穿于核电厂的规划、设计、建设、调试以及运行的全过程。
全范围模拟机(简称FSS)是以真实机组数据为参照,其仿真精度满足以下条件:
1) 25%~100%负荷之间:
对于主要变量,在任意时刻,模型的计算值与参考值之间的偏差应不超过参考值的±1%。
对于要求无死区并跟随设定点变化的一些值,在任意时刻,设定值与模型计算值之间的偏差应不超过设定值的±0.5%。
2) 0~25 %负荷之间:
在0负荷时(冷停堆及热停堆),主要变量的精度应是参考值的±2%,在0~25%负荷之间具有线性关系。对于在0~25%负荷之间要求无死区并跟随设定点变化的一些值,其精度应为相应负荷下的设定值的±1%。
3) 在模拟机连续运行24 h期间,主要变量的偏差应不超过允差要求。
4) 对于辅助变量,在25%~100%负荷之间,其精度应是参考值的±3%,在0~25%负荷之间,其精度应是参考值的±5%。
可见FSS可以对实际机组的各个系统实现真实的仿真模拟,其对核电厂设计优化以及工程验证等是一个重要的验证手段[1]。包括对仪控设计图纸的验证,对实际机组DCS调节系统的控制验证,对主控室人机接口的设计验证,再到对工艺系统的设计改进和新研发堆型的总体运行研究的设计验证,以及对核电厂运行与调试规程的验证,使得模拟机在多个领域可以进行设计验证[2-4]。
作为应对全厂断电事故(SBO)所做的重要改进项,二次侧非能动余热排出(ASP)系统基于蒸汽发生器(SG) 的二次侧闭式自然循环原理,在缺少外部电源的情况下,可以导出堆芯余热[5]。本文基于国内某三代核电机组FSS,以仿真手段验证ASP系统在SBO事故工况下是否满足设计需求。
Verification of Advanced Secondary Passive Residual Heat Removal System Based on Full-Scope Simulator
-
摘要:
目的 作为应对全厂断电事故(SBO)所做的重要设计改进项,二次侧非能动余热排出系统(ASP)基于蒸汽发生器(SG) 的二次侧闭式自然循环,在全部补水丧失的情况下,可以有效导出堆芯余热。 方法 基于全范围模拟机Full Scope Simulator(简称FSS),在模拟机平台引入SBO+SBO柴油机失效+ASG气动泵失效事故工况,通过仿真模拟的方式,验证ASP系统对机组一、二回路的影响。 结果 仿真结果表明:ASP系统投运后,堆芯余热被有效导出,运行4 h后,SG内水位可恢复至8.6 m,SG内压力降至1.2 MPa(a),堆芯出口温度降至约为209 ℃,堆芯饱和温度裕度大于20 ℃,堆芯不存在融毁风险,事故处于可控状态。 结论 ASP系统满足设计工况需求,可实现堆芯余热的长期有效导出。 Abstract:Introduction As an important design improvement to cope with the station black out (SBO) accident, the advanced secondary passive residual heat removal (ASP) system is based on the closed natural circulation of secondary side of the steam generator (SG), can effectively remove the residual heat of the reactor core in the case of total loss of feedwater. Method Based on full-scope simulator (FSS),the paper introduced the SBO superimposed SBO diesel engine failure and ASG pneumatic pump failure accident conditions on the simulator platform , and verified the influence of the ASP system for the primary and secondary loops of nuclear plants in accident conditions by using the simulation method. Result The simulation results we obtained demonstrate that after the ASP system was put into operation, the residual heat of the core was effectively removed. After 4 hours , the water level of the SG recover to 8.6 m, the pressure of the SG dropped to 1.2 MPa(a), the core outlet temperature dropped to about 209 ℃, and the margin of core saturation temperature is greater than 20 ℃, there is no risk of meltdown of the core, and the accident is in a controllable state. Conclusion The ASP system meets the requirements of the design conditions, and can realize the long-term and effective removal of the residual heat of the reactor core. -
Key words:
- nuclear plants /
- SBO /
- SG /
- full scope simulator /
- FSS /
- advanced secondary passive residual heat removal system /
- ASP /
- simulation verification
-
[1] 张立群, 张玉峰, 王少华, 等. 基于工程仿真机的设计验证管理方法研究 [J]. 仪器仪表用户, 2021, 28(7): 49-52. DOI: 10.3969/j.issn.1671-1041.2021.07.013. ZHANG L Q, ZHANG Y F, WANG S H, et al. Validation and verification management method of nuclear power plant full engineering simulator [J]. Instrumentation, 2021, 28(7): 49-52. DOI: 10.3969/j.issn.1671-1041.2021.07.013. [2] 曲伟. 核电站仿真机在首堆建设中的作用 [J]. 仪器仪表用户, 2019, 26(9): 64-66. DOI: 10.3969/j.issn.1671-1041.2019.09.018. QU W. The role of nuclear power plant simulator in the first unit construction [J]. Instrumentation, 2019, 26(9): 64-66. DOI: 10.3969/j.issn.1671-1041.2019.09.018. [3] 刘宇穗. 新型核电机组启停及给水系统控制策略 [J]. 南方能源建设, 2020, 7(2): 127-131. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.019. LIU Y S. Control strategy of start/stop and feed water system of new type nuclear power plant [J]. Southern Energy Construction, 2020, 7(2): 127-131. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.019. [4] 许文朝, 姜夏岚, 秦治国. 全范围模拟机对核电站控制优化前的验证与预演 [J]. 系统仿真和技术, 2020, 16(2): 118-122. DOI: 10.16812/j.cnki.cn31-1945.2020.02.011. XU W C, JIANG X L, QIN Z G. Verification and rehearsal before control optimization of nuclear power plant based on FSS [J]. System Simulation Technology, 2020, 16(2): 118-122. DOI: 10.16812/j.cnki.cn31-1945.2020.02.011. [5] 李亮国, 苏前华, 郝陈玉, 等. 二次侧非能动余热排出系统运行及换热特性研究 [J]. 核科学与工程, 2020, 40(4): 532-539. DOI: 10.3969/j.issn.0258-0918.2020.04.003. LI L G, SU Q H, HAO C Y, et al. Investigation on operation and heat transfer performance of advanced secondary passive residual heat removal system [J]. Nuclear Science Engineering, 2020, 40(4): 532-539. DOI: 10.3969/j.issn.0258-0918.2020.04.003. [6] 章旋, 茆荣, 曹建亭. 核电站全范围模拟机关键技术探讨 [J]. 热力发电, 2011, 40(1): 16-18. DOI: 10.3969/j.issn.1002-3364.2011.01.016. ZHANG X, MAO R, CAO J T. An approach to the key technologies of full scale simulator in nuclear power plant [J]. Thermal Power Generation, 2011, 40(1): 16-18. DOI: 10.3969/j.issn.1002-3364.2011.01.016. [7] 张登超, 高连国, 方国辉. 核电厂数字化仪控系统全范围模拟机仿真方式研究及应用 [J]. 自动化博览, 2020(7): 52-56. ZHANG D C, GAO L G, FANG G H. Research and application on simulation modes of nuclear full scope simulator for nuclear power plant digital control system [J]. Automation Panorama, 2020(7): 52-56. [8] 李峰, 刘昌文, 吴清, 等. 华龙一号二次侧非能动余热排出系统功能论证 [J]. 核动力工程, 2019, 40(增刊1): 28-31. DOI: 10.13832/j.jnpe.2019.S1.0028. LI F, LIU C W, WU Q, et al. Demonstration of passive residual heat removal system on HPR1000 secondary side [J]. Nuclear Power Engineering, 2019, 40(Supp. 1): 28-31. DOI: 10.13832/j.jnpe.2019.S1.0028. [9] 熊万玉, 宫厚军, 郗昭, 等. RELAP5程序应用于二次侧非能动余热排出系统设计的初步评价 [J]. 核动力工程, 2015, 36(2): 143-146. DOI: 10.13832/j.jnpe.2015.02.0143. XIONG W Y, GONG H J, XI Z, et al. Preliminary evaluation of RELAP5 for design of secondary side passive residual heat removal system [J]. Nuclear Power Engineering, 2015, 36(2): 143-146. DOI: 10.13832/j.jnpe.2015.02.0143. [10] 徐海岩, 吴小航, 卢冬华, 等. 二次侧非能动余热排出系统传热能力试验研究 [J]. 原子能科学技术, 2018, 52(3): 447-452. DOI: 10.7538/yzk.2017.youxian.0304. XU H Y, WU X H, LU D H, et al. Test sduty on heat transfer capability of advanced secondary side passive residual heat removal system [J]. Atomic Energy Science and Technology, 2018, 52(3): 447-452. DOI: 10.7538/yzk.2017.youxian.0304. [11] 李亮国, 傅孝良, 文青龙, 等. 多系统耦合下自然循环特性试验研究与计算分析 [J]. 核科学与工程, 2018, 38(3): 403-410. DOI: 10.3969/j.issn.0258-0918.2018.03.010. LI L G, FU X L, WEN Q L, et al. Experimental and numerical investigation of natural circulation characteristics of multi-coupled systems [J]. Nuclear Science and Engineering, 2018, 38(3): 403-410. DOI: 10.3969/j.issn.0258-0918.2018.03.010. [12] 王冠一, 陈宝龙, 吴鹏, 等. 基于全范围模拟机对压水堆MSLB叠加SGTR事故分析 [J]. 核科学与工程, 2019, 39(4): 613-618. DOI: 10.3969/j.issn.0258-0918.2019.04.018. WANG G Y, CHEN B L, WU P, et al. Analysis of pressurized water reactor's MSLB with SGTR based on full-scope simulator [J]. Nuclear Science Engineering, 2019, 39(4): 613-618. DOI: 10.3969/j.issn.0258-0918.2019.04.018. [13] 于承鑫, 郑伟. SBO +MBLOCA事故演习序列应用的仿真研究 [J]. 计算机仿真, 2021, 38(1): 446-450. YU C X, ZHENG W. The simulation research on the application of SBO+MBLOCA accident drill sequence [J]. Computer Simulation, 2021, 38(1): 446-450. [14] 姜夏岚, 李辉, 秦治国. ACPR1000主回路与稳压器硼浓度差仿分析 [J]. 核动力工程, 2020, 41(5): 110-115. DOI: 10.13832/j.jnpe.2020.05.0110. JIANG X L, LI H, QIN Z G. Simulation analysis of boron concentration difference between primary circuit and pressurizer of ACPR1000 [J]. Nuclear Power Engineering, 2020, 41(5): 110-115. DOI: 10.13832/j.jnpe.2020.05.0110. [15] 王剑. ATWT在CP600全范围模拟机中的实现及其改进建议 [J]. 科技视界, 2018(3): 136-137. DOI: 10.3969/j.issn.2095-2457.2018.03.054. WANG J. Realization of ATWT in CP600 full range simulator and suggestions for improvement [J]. Science & Technology Vision, 2018(3): 136-137. DOI: 10.3969/j.issn.2095-2457.2018.03.054.