-
燃煤电厂运行维护阶段低碳技术分为两类,即颗粒物的减排路径和温室气体的减排路径。其中颗粒物的减排路径包括化学吸收技术、物理吸收技术、膜分离技术;温室气体减排路径包括储能技术、光电调峰技术、直流供电技术。
-
燃煤电厂运营过程中会产生大量颗粒物(烟尘、SO2、NOx等)。现行的《火电厂大气污染物排放标准》GB13223—2011中对燃煤锅炉颗粒物排放浓度提出更高限值要求:燃煤电厂在基准氧含量6%以下,烟尘浓度限制为5 mg/m3、SO2浓度限制为35 mg/m3、NOx浓度限制为50 mg/m3[31]。电厂利用电除尘器、袋式除尘器、复合除尘器等设备对有害颗粒物进行捕集。按燃烧后的颗粒物碳捕集方式主要有吸收技术、吸附技术、气体分离技术等[32]。
-
碳捕集吸收技术可分为化学吸收和物理吸收两部分。化学吸收技术原理是利用有机胺、氨水、碳酸盐离子液体等弱碱性吸收剂在低温(约40 ℃)环境发生化学反应,当温度加热到120 ℃左右时,发生可逆反应,释放CO2[33]。物理吸收技术原理是利用低温、高压条件下CO2在吸收剂中物理溶解度较高的特性,在高温、低压下CO2溶解度降低,进而CO2吸收分离过程[34]。物理吸收技术捕集CO2过程主要通过物理溶解作用,其具有溶剂可再生利用且性能稳定无腐蚀等优点[35]。该技术的工艺流程图详见图3。
此外有学者研究发现,利用化学吸收技术捕集CO2的关键是吸收过程的传热传质效率[37],而影响传热传质效率的两个重要因素是气液有效接触面积和吸收前后的粘度变化。另有学者基于ASPEN PLUS模拟手段,建立乙醇胺(MEA)吸收剂捕集CO2的解析能耗数学模型,边界条件依据实际工程参数:电厂装机容量600 MW,热效率45%,烟气CO2摩尔分数13.3%[38],得到CO2 100%分离时,富液负载为0.484 mol CO2/mol MEA[39]。进一步得到乙醇胺在质量分数为20%、30%、40%时,系统最小解析能耗分别为4.2 GJ/t CO2、3.5 GJ/t CO2、3.1 GJ/t CO2[40]。此外,也有学者采用氨水溶液捕集CO2,其反应原理如式(1)~式(4)[41]所示。
$$ {\rm{N}}{{\rm{H}}_3} + {{\rm{H}}_2}{\rm{O}} + {\rm{C}}{{\rm{O}}_2} = {\rm{N}}{{\rm{H}}_4}{\rm{HC}}{{\rm{O}}_3} $$ (1) $$ {\rm{N}}{{\rm{H}}_3} + {{\rm{H}}_2}O = {\rm{N}}{{\rm{H}}_4}{\rm{OH}} $$ (2) $$ {\rm{N}}{{\rm{H}}_4}{\rm{HC}}{O_3} + {\rm{N}}{{\rm{H}}_4}{\rm{OH}} = {({\rm{N}}{{\rm{H}}_4})_2}{\rm{C}}{{\rm{O}}_3} + {{\rm{H}}_2}{\rm{O}} $$ (3) $$ {({\rm{N}}{{\rm{H}}_4})_2}{\rm{C}}{{\rm{O}}_3} + {{\rm{H}}_2}{\rm{O}} + {\rm{C}}{{\rm{O}}_2} = 2{\rm{N}}{{\rm{H}}_4}{\rm{HC}}{{\rm{O}}_3} $$ (4) -
碳捕集吸附技术原理是利用活性炭、沸石、硅胶、分子筛等组成的固体吸附剂,基于吸附剂表面上活性点之间化学键或范德华力吸附烟气中CO2[42-43]。该技术常用的两种调节措施是变压调节和变温调节。变压调节措施是根据燃煤电厂烟道中烟气组分的沸点差异,通过改变压力,达到分离CO2的目的。与变温调节措施相比,变压调节措施能耗小,且回收CO2效率高,达85%以上。吸附法工艺流程相对简单,如变压吸附过程包括升压、吸附、顺放、逆放、冲洗五个步骤,但固体吸收剂的研发速度相对缓慢,继而对该技术的发展略有制约。
日本是最早在东京、Kansai等电厂行业利用吸附技术分离CO2的国家。加拿大能源公司利用我国在变压吸附技术分离燃气化厂排除的CO2,将永久封存2 000万t CO2[44]。我国中石化在胜利油田拥有一套采用吸附分离法100 t/d示范项目,预计每年可减少CO2达3万t [45]。
-
碳捕集气体分离技术中最常用膜分离技术,其原理是利用CO2在膜内溶解、扩散速率不同,与其他气体在膜两侧形成分压差的作用下,实现CO2分离[46]。通常燃煤电厂烟道中利用膜分离技术捕集CO2应先进行脱除酸性杂质,但该过程易增加系统能耗,因此需根据实际工程烟道气体成分,确定工艺流程。该技术的常用工艺流程详见图4。
美国俄亥俄州立大学Ho课题组研制了一种螺旋形膜组件,在1 000 mL/min的进气速率下测试,得到800 GPU的CO2渗透速率,CO2/N2分离因子达到了140,同时控制了压降约在10 342 Pa/m[47-48]。挪威科技大学选用巴斯夫(BASF)公司生产的聚乙烯醇膜,制得平板膜,在0.1 MPa操作压力下,CO2渗透速率约为70~220 GPU,CO2/N2分离因子约80~300,并利用聚乙烯醇平板膜组件及中空纤维膜组件在燃煤电厂进行了真实烟道气试验[49]。相对于国外,我国应用该技术相对较晚,国内首套具有独立自主知识产权的30 m3/h电厂烟气脱碳的中试装置于2018年年底完成设计,并于2019年6月在南京化工所完成调试并开始运行[50]。
根据《全球碳捕集与封存现状2020》统计,目前美国是工程应用利用碳捕集技术最广泛的国家,美国已建成投产的碳捕集设施数量约占全球的50%[51]。同时,我国近十年碳捕集技术也取得了一定成果。我国胜利油田燃煤电厂采用化学吸收技术,2010年碳捕集规模约4万t;华润海风电厂燃煤烟气采用膜分离技术,2019年碳捕集规模约0.6万t[36]。
-
目前电厂实施减排措施,能源动力体系正由煤炭向多元化转变,充分利用可再生能源已是必然,同时可再生能源并网给电力系统也带来巨大挑战[52-54]。储能技术是缓解可再生能源并网压力的有效技术手段。储能技术按用能的形式可分为物理储能、化学储能、电磁储能、相变储能[55]。
物理储能技术包括飞轮储能、抽水蓄能和压缩空气储能。飞轮储能技术原理是利用电动–发电机实现电能与飞轮的机械能之间相互转换的一种储能技术[56],其具有功与无功相对独立、负荷响应迅速、无污染等特点[57]。但该技术储能容量有限,因此不适用于长期大规模储能。抽水蓄能技术原理是利用河流高差产生的势能转化为水泵–水轮机的机械能,再通过电机将机械能转化为电能[58-58],该技术应用较为广泛,但抽水蓄能技术对地理条件要求较高,该技术扩大储能容量也受到制约[59]。与前两种储能技术(飞轮储能、抽水蓄能)相比,压缩空气储能技术是最具有发展潜力的储能技术,其原理是利用压力缸排汽作为汽轮机驱动力带动空气机,通过增减低压缸的进汽量,实现火电机组与压缩空气储能的能量传递。世界上首座压缩空气储能电站是机组容量290 MW的德国Huntdorf电站,其中从冷态启动到满负荷仅需6 min[60]。我国首个配套60 MW的压缩空气储能项目建于2017年,该项目运行后在规模与效率上均为国内压缩空气储能系统的典范[55]。
基于氢气的化学储能是一种清洁的储能技术,其原理是技术通过电能与氢气的化学能之间的相互转化实现电能的储存与释放。当电能过剩时,利用电解槽电解水产生氢气,将电能储存为氢气的化学能,产生的氢气可以进入管道直接利用或者储存在储氢设备中,当电力短缺时直接被燃料电池利用产生电能[61]。此外,碱性燃料电池、质子交换膜燃料电池、固体氧化物燃料电池均属于化学储能范畴。然而,碱性燃料电池通常以空气为氧化剂,电池寿命受空气中二氧化碳毒害寿命下降明显;质子交换膜燃料电池效率较低,且由于使用昂贵的铂催化剂在成本方面不具有优势;与上述两种电池相比,固体氧化物燃料电池高温运行能够提高能量转化效率,同时能够通过热量的输入减少电力的消耗,进一步提高电–化学转化效率,循环效率能够达到60%~80%[62],因此,固体氧化物燃料电池是一种有应用前景的燃料电池技术。
电磁储能包括超级电容储能和超导磁储能,两种储能技术均为新兴的储能方式,目前还未有大规模应用。超级电容技术与电池相似,其原理是由电极、电解质以及允许离子通过的多孔膜组成,其响应速度较快,寿命长,但超级电容成本很高,约为8 000美元/kWh[63]。超导磁储能技术原理是通过电磁感应实现电能与电磁能的转化。超导磁储能的优势是快速响应,一个1 MW/kWh的超导电磁储能功率可以在20 ms内增加到200 kW,电容成本高达1 000~10 000美元/kWh[64]。
电池是电化学储能技术的主要储存装置,其原理是利用正极、负极、隔膜、电解液等组件,将电能储存为化学能。常见的电化学储能电池有铅酸电池、镍镉电池、钠硫电池、锂电池、液流电池等。钠硫电池比能量大(100~175 Wh/kg)[65],能够达到铅酸蓄电池的5倍以上,同时钠硫电池效率高达70%~92%[66],是一种具有潜力的储能方式。储能技术的技术参数详见表1。
储能技术 技术参数 循环效率/% 容量/MWh 功率/MW 自放电率/% 物理储能 抽水蓄能 65~85 500~8 000 100~5 000 — 压缩空气储能 70~89 <1 000 1~400 — 飞轮储能 90~95 0.1~5 0.1~10 100 电化学储能 铅酸电池 63~90 0.001~40 0.05~10 <0.2 镍镉电池 60~90 6.75 3~20 0.02~0.6 电化学储能 钠硫电池 70~92 0.4~244.8 <34 — 锂电池 >90 0.004~50 0.005~100 0.03 液流电池 65~85 — 1~25 — 电磁储能 超导磁储能 95~98 — 1~100 10~15 超级电容 90~95 <0.01 <0.01 5~20 化学储能 碱性燃料电池 32~50 — <0.1 — 超导磁储能质子交换膜燃料电池 40~50 — <0.25 — 固体氧化物燃烧电池 60~80 — <2 — -
深度调峰技术是电厂发展低碳与无碳清洁能源结构改革的必然选择,也是电厂日常调峰的常用手段。该技术能够缓解新能源供电不稳定情况下调节火电辅助新能源稳定供电。
然而,燃煤机组常存在低负荷运行时燃油燃烧不充分严重污染燃油。基于深度调峰技术对火电厂燃烧点火方式进行改造,采用等离子点火或富氧微油点火措施代替过去的投油点火方式,实现电厂低负荷稳燃[67]。改进措施主要利用燃煤代替大燃油助燃并形成稳定火源,具有节能环保效益突出等特点[68]。以某电厂200 MW机组为研究对象,采用稳燃调峰技术改造后,锅炉能够实现30 MW出力水平下的低负荷稳定燃烧,日常调峰深度达到70%[68]。
另外,频繁启动参与调峰过程会加重机组金属部件疲劳损伤,影响机组运行的安全性与经济性。同时燃烧过程的风煤配比和二次配风也是维持炉内燃烧优化稳定的核心问题。采用深度调峰改造的前馈反馈调节措施对燃烧器提供的燃料量、一二次风量、燃尽风量、风煤比、过量空气系数、风粉混合物温度等与燃烧相关的参数进行全局的、精确的优化控制,缓解低负荷阶段中炉内燃烧不稳定性问题,也有利于及时发现金属部件发生故障问题。图5为前馈反馈调节的逻辑控制流程示意图。由图可知逻辑控制主要步骤包括:划分锅炉运行工况、提取前馈控制信号、提取反馈控制信号、计算外回路反馈值、计算反馈控制规则、计算反馈控制规则、计算反馈定制信号、获取深度调峰工况下锅炉燃烧优化控制信号等[69]。此外,有学者基于时间延迟输入和输出的前馈反馈神经网络,建立了机组负荷和主蒸汽压力的逆模型,并结合模型设计了协调系统的控制器,最终得到,神经网络逆向控制器具有更好的控制性能和控制精度[70]。
基于此,为了提高深度调峰技术的调峰能力,首先需确定机组允许的最低稳定运行负荷点;其次,应考虑优化匹配区域峰谷电价政策和机组运行时长。
-
柔性直流供电技术具有分布式能源、直流负载接纳能力好、控制灵活等特点[72]。随着可再生能源供电比例的提升,为了匹配零碳电力系统,对用电侧的储能和调节能力要求也会越来越高。而柔性直流供电技术与风电、光电、储能措施相结合,直流供电允许电压波动范围更大,继而提升了电网瞬时供电能力,可以帮助系统更好地调节末端用电策略以应对市电的消纳要求,也是今后配电网发展的新趋势。图6为柔性直流供电技术与光电、储能措施相结合的系统示意图。用户等承担能源消费角色,外部输入能源满足用户能源利用需求,通过可再生能源利用及储能措施,结合柔性直流供电技术,满足节能需求,促进低碳目标。
直流配电系统包括中压配电网和用户侧配电网[73]。几种供电系统特性如表2所示。
供电系统 特性 220 V交流 现行供电模式 310 V直流(高电压) 空调、冰箱、洗衣机等大型家庭电器 48 V直流(低电压) 电视、电脑、手机、照明等数码电器 310 V直流+48 V直流 住宅供电的理想方式(修建成本高) 220 V交流+310 V直流 现行供电系统可用,适用于大型家庭电器 220 V交流+48 V直流 现行供电系统可用,适用于数码电器 此外,交直流转换过程中的功率调节是直流供电技术重点。当实际交流功率与外电网进入的交流电功率不一致时,需通过两者的差值修正直流母线电压。实际交流功率高,则降低直流母线电压;外电网进入的交流功率高,则提高直流母线电压[71]。
Discussion on the Whole Process Low-Carbon Energy Saving Technology Path of Coal-Fired Power Plants
-
摘要:
目的 燃煤电厂的低碳节能路径是缓解我国能源危机与环境污染的重要策略。 方法 文章评述了当前燃煤电厂在燃料供应设计阶段和节能运行维护阶段的低碳节能技术以及低碳技术潜在的发展方向。 结果 对于电厂燃料供应设计阶段的低碳技术应优化生物质/氨与煤的掺烧比例,良好的掺烧比例有利于炉内充分燃烧,降低碳排;电厂节能运行维护阶段吸收技术、吸附技术和气体分离技术是碳颗粒捕集的常用手段,同时储能技术、深度调峰技术、柔性直流供电技术对于CO2减排具有重要作用。 结论 对电厂低碳技术发展进行展望,认为采用综合互补低碳协同方式,并结合电厂运行过程中的监管反馈调控措施,将是促进电厂可持续能源发展的重要发展方向。 Abstract:Introduction Low carbon emission technology of coal-fired power plant is an important strategy to alleviate energy crisis and environmental pollution in China. Method The low-carbon emission reduction path and potential development direction of low-carbon technology in fuel supply design stage and energy-saving operation and maintenance stage of current coal-fired power plants were reviewed. Result For the low-carbon technology in the design stage of power plant fuel supply, the ratio of biomass/ammonia and coal mixing should be optimized. A good ratio of biomass/ammonia mixing and burning should be fully burned in the furnace to reduce carbon emissions. Absorption technology, adsorption technology, and gas separation technology are common means of carbon particle capture in the energy-saving operation and maintenance stage of the power plant. At the same time, the important role of energy storage technology, deep peak regulating technology, and flexible DC power supply technology on the CO2 emission reduction path is expounded. Conclusion Finally, the development of low carbon technology in power plants is prospected. It is considered that the adoption of a comprehensive complementary and low carbon collaborative way, combined with the regulatory feedback control measures in the operation process of power plants. It will be an important development direction to promote the sustainable energy development of power plants. -
储能技术 技术参数 循环效率/% 容量/MWh 功率/MW 自放电率/% 物理储能 抽水蓄能 65~85 500~8 000 100~5 000 — 压缩空气储能 70~89 <1 000 1~400 — 飞轮储能 90~95 0.1~5 0.1~10 100 电化学储能 铅酸电池 63~90 0.001~40 0.05~10 <0.2 镍镉电池 60~90 6.75 3~20 0.02~0.6 电化学储能 钠硫电池 70~92 0.4~244.8 <34 — 锂电池 >90 0.004~50 0.005~100 0.03 液流电池 65~85 — 1~25 — 电磁储能 超导磁储能 95~98 — 1~100 10~15 超级电容 90~95 <0.01 <0.01 5~20 化学储能 碱性燃料电池 32~50 — <0.1 — 超导磁储能质子交换膜燃料电池 40~50 — <0.25 — 固体氧化物燃烧电池 60~80 — <2 — -
[1] 王树民. 燃煤电厂近零排放综合控制技术及工程应用研究 [D]. 北京: 华北电力大学(北京), 2017. WANG S M. Research on coal-fired power plants near-zero emission technologies and applications [D]. Beijing: North China Electric Power University (Beijing), 2017. [2] 环境保护部, 国家发展和改革委员会, 国家能源局. 全面实施燃煤电厂超低排放和节能改造工作方案 [R]. 北京: 环境保护部办公厅, 2015. Ministry of Ecology and Environment of the People's Republic of China, National Development and Reform Commission, National Energy Administration. Fully implement the ultra-low emission and energy-saving renovation work plan for coal-fired power plants [R]. Beijing: General Office of the Ministry of Ecology and Environment of the People's Republic of China, 2015. [3] 郭小龙. 煤电厂超临界汽轮机的节能改造 [J]. 机械管理开发, 2021, 36(12): 192-194. DOI: 10.16525/j.cnki.cn14-1134/th.2021.12.079. GUO X L. Energy saving retrofit of supercritical turbine in coal power plant [J]. Mechanical Management and Development, 2021, 36(12): 192-194. DOI: 10.16525/j.cnki.cn14-1134/th.2021.12.079. [4] 李发林. 制度管理与高压变频在电厂节能改造中应用 [J]. 中国建材科技, 2019, 28(6): 26-27. LI F L. Application of system management and high voltage frequency conversion in energy saving reform of power plant [J]. China Building Materials Science & Technology, 2019, 28(6): 26-27. [5] 冯征超, 李成刚, 区真理. 变频调速技术在电厂节能改造中的应用 [J]. 广东电力, 2006, 19(10): 50-53,72. DOI: 10.3969/j.issn.1007-290X.2006.10.016. FENG Z C, LI C G, OU Z L. Frequency control technique applied to energy conservation transformation of power plants [J]. Guangdong Electric Power, 2006, 19(10): 50-53,72. DOI: 10.3969/j.issn.1007-290X.2006.10.016. [6] 王双童. 低碳经济形势下提升燃煤发电企业节能降耗对策 [J]. 江苏电机工程, 2011, 30(2): 66-69. DOI: 10.3969/j.issn.1009-0665.2011.02.019. WANG S T. Measures for enhancing energy saving of the coal-fired power plants at low-carbon economic situation [J]. Jiangsu Electrical Engineering, 2011, 30(2): 66-69. DOI: 10.3969/j.issn.1009-0665.2011.02.019. [7] SAHU S G, CHAKRABORTY N, SARKAR P. Coal-biomass co-combustion: An overview [J]. Renewable & Sustainable Energy Reviews, 2014, 39: 575-586. DOI: 10.1016/j.rser.2014.07.106. [8] WIELGOSIŃSKI G, ŁECHTAŃSKA P, NAMIECIŃSKA O. Emission of some pollutants from biomass combustion in comparison to hard coal combustion [J]. Journal of the Energy Institute, 2017, 90(5): 787-796. DOI: 10.1016/j.joei.2016.06.005. [9] 国家能源局, 环境保护部. 国家能源局环境保护部关于开展燃煤耦合生物质发电技改试点工作的通知 (国能发电力[2017]75号) [EB/OL]. (2017-11-27) [2022-06-10]. http: //zfxxgk. nea. gov.cn/auto84/201712/t20171204_3065. htm. National Energy Administration, Ministry of Ecology and Environment of the People's Republic of China. Notice of the Environmental Protection Department of the National Energy Administration on the pilot project of technological upgrading of coal-fired coupled biomass power generation [EB/OL]. (2017-11-27) [2022-06-10]. http: //zfxxgk. nea. gov.cn/auto84/201712/t20171204_3065. htm. [10] 高金锴, 佟瑶, 王树才, 等. 生物质燃煤耦合发电技术应用现状及未来趋势 [J]. 可再生能源, 2019, 37(4): 501-506. DOI: 10.13941/j.cnki.21-1469/tk.2019.04.005. GAO J K, TONG Y, WANG S C, et al. The current situation and future development tendency of biomass-coal coupling power generation system [J]. Renewable Energy Resources, 2019, 37(4): 501-506. DOI: 10.13941/j.cnki.21-1469/tk.2019.04.005. [11] 王一坤, 邓磊, 贾兆鹏, 等. 燃煤机组大比例直接耦合生物质发电对机组影响研究 [J]. 热力发电, 2021, 50(12): 80-91. doi: 10.19666/j.rlfd.202104075 WANG Y K, DENG L, JIA Z P, et al. Influence of large-scale direct coupled biomass power generation on coal-fired units [J]. Thermal Power Generation, 2021, 50(12): 80-91. doi: 10.19666/j.rlfd.202104075 [12] ZHANG J W, ITO T, ISHII H, et al. Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: effect of ammonia co-firing ratio [J]. Fuel, 2020, 267: 117166. DOI: 10.1016/j.fuel.2020.117166. [13] YOSHIZAKI T. Test of the Co-firing of ammonia and coal at mizushima power station [J]. Journal of the Combustion Society of Japan, 2019, 61(198): 309-312. DOI: 10.20619/jcombsj.61.198_309. [14] KOBAYASHI H, HAYAKAWA A, SOMARATHNE K D K A, et al. Science and technology of ammonia combustion [J]. Proceedings of the Combustion Institute, 2019, 37(1): 109-133. DOI: 10.1016/j.proci.2018.09.029. [15] ISHIHARA S, ZHANG J W, ITO T. Numerical calculation with detailed chemistry on ammonia co-firing in a coal-fired boiler: effect of ammonia co-firing ratio on NO emissions [J]. Fuel, 2020, 274: 117742. DOI: 10.1016/j.fuel.2020.117742. [16] 周上坤, 杨文俊, 谭厚章, 等. 氨燃烧研究进展 [J]. 中国电机工程学报, 2021, 41(12): 4164-4182. DOI: 10.13334/j.0258-8013.pcsee.201476. ZHOU S K, YANG W J, TAN H Z, et al. Research progress of ammonia combustion [J]. Proceedings of the CSEE, 2021, 41(12): 4164-4182. DOI: 10.13334/j.0258-8013.pcsee.201476. [17] HADI K, ICHIMURA R, HASHIMOTO G, et al. Effect of fuel ratio of coal on the turbulent flame speed of ammonia/coal particle cloud co-combustion at atmospheric pressure [J]. Proceedings of the Combustion Institute, 2021, 38(3): 4131-4139. DOI: 10.1016/j.proci.2020.06.358. [18] WANG D, JI C W, WANG Z, et al. Measurement of oxy-ammonia laminar burning velocity at normal and elevated temperatures [J]. Fuel, 2020, 279: 118425. doi: 10.1016/j.fuel.2020.118425 [19] MILLER J A, SMOOKE M D, GREEN R M, et al. Kinetic modeling of the oxidation of ammonia in flames [J]. Combustion Science and Technology, 1983, 34: 149-176. doi: 10.1080/00102208308923691 [20] VALERA-MEDINA A, XIAO H, OWEN-JONES M, et al. Ammonia for power [J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. DOI: 10.1016/j.pecs.2018.07.001. [21] SHIH C F, ZHANG T, LI J H, et al. Powering the future with liquid sunshine [J]. Joule, 2018, 2(10): 1925-1949. DOI: 10.1016/j.joule.2018.08.016. [22] Service R F. Liquid sunshine [J]. Science, 2018, 361(6398): 120-123. DOI: 10.1126/science.361.6398.120. [23] ISHIHARA S, ZHANG J W, ITO T. Numerical calculation with detailed chemistry of effect of ammonia co-firing on NO emissions in a coal-fired boiler [J]. Fuel, 2020, 266: 116924. DOI: 10.1016/j.fuel.2019.116924. [24] 国家环境保护局. 燃煤电厂大气污染物排放标准: GB 13223—1991 [S]. 北京: 国家技术监督局, 国家环境保护局, 1992. National Environmental Protection Agency. Emission standards of air pollutants for coal-fired power plants: GB 13223—1991 [S]. Beijing: The State Bureau of Quality and Technical Supervision, National Environmental Protection Agency, 1992. [25] 王建秀, 吴远斌, 于海鹏. 二氧化碳封存技术研究进展 [J]. 地下空间与工程学报, 2013, 9(1): 81-90. WANG J X, WU Y B, YU H P. Review of the technology for sequestration of carbon dioxide [J]. Chinese Journal of Underground Space and Engineering, 2013, 9(1): 81-90. [26] 骆仲泱, 方梦祥, 李明远, 等. 二氧化碳捕集、封存和利用技术 [M]. 北京: 中国电力出版社, 2012: 261-279. LUO Z Y, FANG M X, LI M Y, et al. Carbon dioxide capture, storage and utilization technology [M]. Beijing: China Electric Power Press, 2012: 261-279. [27] 黄定国, 杨小林, 余永强, 等. CO2地质封存技术进展与废弃矿井采空区封存CO2 [J]. 洁净煤技术, 2011, 17(5): 93-96. DOI: 10.13226/j.issn.1006-6772.2011.05.034. HUANG D G, YANG X L, YU Y Q, et al. Technical progress of CO2 geological sequestration and CO2 sequestration by antiquated mine goaf [J]. Clean Coal Technology, 2011, 17(5): 93-96. DOI: 10.13226/j.issn.1006-6772.2011.05.034. [28] 姜凯, 李治平, 窦宏恩, 等. 沁水盆地二氧化碳埋存潜力评价模型 [J]. 特种油气藏, 2016, 23(2): 112-114. DOI: 10.3969/j.issn.1006-6535.2016.02.027. JIANG K, LI Z P, DOU H E, et al. Evaluation model of CO2 storage potential in Qinshui Basin [J]. Special Oil & Gas Reservoirs, 2016, 23(2): 112-114. DOI: 10.3969/j.issn.1006-6535.2016.02.027. [29] 王双明, 申艳军, 孙强, 等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索 [J]. 煤炭学报, 2022, 47(1): 45-60. DOI: 10.13225/j.cnki.jccs.yg21.1872. WANG S M, SHEN Y J, SUN Q, et al. Underground CO2 storage and technical problems in coal mining area under the "dual carbon" target [J]. Journal of China Coal Society, 2022, 47(1): 45-60. DOI: 10.13225/j.cnki.jccs.yg21.1872. [30] AGBOR E, ZHANG X L, KUMAR A. A review of biomass co-firing in North America [J]. Renewable and Sustainable Energy Reviews, 2014, 40: 930-943. DOI: 10.1016/j.rser.2014.07.195. [31] 秦阿宁, 吴晓燕, 李娜娜, 等. 国际碳捕集、利用与封存(CCUS)技术发展战略与技术布局分析 [J]. 科学观察, 2022, 17(4): 29-32. DOI: 10.15978/j.cnki.1673-5668.202204008. QIN A N, WU X Y, LI N N, et al. Analysis on international strategy and technology development of carbon capture [J]. Science Focus, 2022, 17(4): 29-32. DOI: 10.15978/j.cnki.1673-5668.202204008. [32] 方梦祥, 周旭萍, 王涛, 等. CO2化学吸收剂 [J]. 化学进展, 2015, 27(12): 1808-1814. DOI: 10.7536/PC150638. FANG M X, ZHOU X P, WANG T, et al. Solvent development in CO2 chemical absorption [J]. Progress in Chemistry, 2015, 27(12): 1808-1814. DOI: 10.7536/PC150638. [33] 汪世清, 郜时旺, 王绍民, 等. 低温洗涤法烟气脱硫脱碳工艺模拟研究 [J]. 热力发电, 2021, 50(1): 68-73. DOI: 10.19666/j.rlfd.202007202. WANG S Q, GAO S W, WANG S M, et al. Simulation study on removing SO2 and CO2 from flue gas by cryogenic scrubbing [J]. Thermal Power Generation, 2021, 50(1): 68-73. DOI: 10.19666/j.rlfd.202007202. [34] HE X Z, HÄGG M B. Hollow fiber carbon membranes: Investigations for CO2 capture [J]. Journal of Membrane Science, 2011, 378(1/2): 1-9. DOI: 10.1016/j.memsci.2010.10.070. [35] 李新春, 孙永斌. 二氧化碳捕集现状和展望 [J]. 能源技术经济, 2010, 22(4): 21-26. DOI: 10.3969/j.issn.1674-8441.2010.04.004. LI X C, SUN Y B. Status quo and prospect of the carbon dioxide capture [J]. Energy Technology and Economics, 2010, 22(4): 21-26. DOI: 10.3969/j.issn.1674-8441.2010.04.004. [36] 全球碳捕集与封存研究院. 全球碳捕集与封存现状报告2020 [R/OL]. (2021-01-22) [2022-06-10]. https://cn.globalccsinstitute.com/resources/publications-reports-research/global-status-of-ccs-2020/. Global CCS Institute. Global Status of CCS 2020 [R/OL]. (2021-01-22) [2022-06-10]. https://cn.globalccsinstitute.com/resources/publications-reports-research/global-status-of-ccs-2020/. [37] WANG M H, JOEL A S, RAMSHAW C, et al. Process intensification for post-combustion CO2 capture with chemical absorption: a critical review [J]. Applied Energy, 2015, 158: 275-291. DOI: 10.1016/j.apenergy.2015.08.083. [38] ABU-ZAHRA M R M, SCHNEIDERS L H J, NIEDERER J P M, et al. CO2 capture from power plants: part I. A parametric study of the technical performance based on monoethanolamine [J]. International Journal of Greenhouse Gas Control, 2007, 1(1): 37-46. DOI: 10.1016/s1750-5836(06)00007-7. [39] 李青, 余云松, 姜钧, 等. 一种改进的二氧化碳吸收减排法 [J]. 西安交通大学学报, 2008, 42(11): 1413-1417. DOI: 10.3321/j.issn:0253-987X.2008.11.021. LI Q, YU Y S, JIANG J, et al. Improved CO2 capture method by absorption [J]. Journal of Xi'an Jiaotong University, 2008, 42(11): 1413-1417. DOI: 10.3321/j.issn:0253-987X.2008.11.021. [40] 李青, 余云松, 姜钧, 等. 基于热泵技术的化学吸收法二氧化碳捕集系统 [J]. 高校化学工程学报, 2010, 24(1): 29-34. DOI: 10.3969/j.issn.1003-9015.2010.01.006. LI Q, YU Y S, JIANG J, et al. CO2 capture by chemical absorption method based on heat pump technology [J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(1): 29-34. DOI: 10.3969/j.issn.1003-9015.2010.01.006. [41] 高书宝, 张文燕, 王泽江, 等. 二氧化碳的捕集分离与烟气脱钙技术的应用现状 [J]. 盐科学与化工, 2019, 48(8): 1-6. DOI: 10.16570/j.cnki.issn1673-6850.2019.08.001. GAO S B, ZHANG W Y, WANG Z J, et al. Application status of carbon dioxide capture-separation and decalcification by flue gas technology [J]. Journal of Salt Science and Chemical Industry, 2019, 48(8): 1-6. DOI: 10.16570/j.cnki.issn1673-6850.2019.08.001. [42] 赵雪, 芮久后, 王宇, 等. 探讨适合中国的CO2捕集技术 [J]. 科技导报, 2010, 28(4): 97-100. ZHAO X, RUI J H, WANG Y, et al. A study on CO2 capture technology in China [J]. Science & Technology Review, 2010, 28(4): 97-100. [43] 徐冬, 张军, 翟玉春, 等. 变压吸附分离工业废气中二氧化碳的研究进展 [J]. 化工进展, 2010, 29(1): 150-156. DOI: 10.16085/j.issn.1000-6613.2010.01.028. XU D, ZHANG J, ZHAI Y C, et al. Progress in carbon dioxide capture from flue gas by pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2010, 29(1): 150-156. DOI: 10.16085/j.issn.1000-6613.2010.01.028. [44] LANGSTON M V, HOADLEY S F, YOUNG D N. Definitive CO2 flooding response in the SACROC unit [C]//SPE. Proceedings of SPE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, April 16-21, 1988. Tulsa: SPE, 2007: 1-16. [45] 龚蔚, 蒲万芬, 曹建. 就地生成二氧化碳提高采收率研究 [J]. 特种油气藏, 2008, 15(6): 76-78. DOI: 10.3969/j.issn.1006-6535.2008.06.022. GONG W, PU W F, CAO J. Enhance oil recovery by in-situ carbon dioxide generation [J]. Special Oil and Gas Reservoirs, 2008, 15(6): 76-78. DOI: 10.3969/j.issn.1006-6535.2008.06.022. [46] 刘飞, 关键, 祁志福, 等. 燃煤电厂碳捕集、利用与封存技术路线选择 [J]. 华中科技大学学报(自然科学版), 2022, 50(7): 1-13. DOI: 10.13245/j.hust.220701. LIU F, GUAN J, QI Z F, et al. Technology route selection for carbon capture utilization and storage in coal-fired power plants [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(7): 1-13. DOI: 10.13245/j.hust.220701. [47] CHEN K K, HAN Y, ZHANG Z E, et al. Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine [J]. Journal of Membrane Science, 2021, 628: 119215. DOI: 10.1016/J.MEMSCI.2021.119215. [48] WU D Z, SUN C H, DUTTA P K, et al. SO2 interference on separation performance of amine-containing facilitated transport membranes for CO2 capture from flue gas [J]. Journal of Membrane Science, 2017, 534: 33-45. DOI: 10.1016/j.memsci.2017.04.003. [49] DENG L Y, KIM T J, HÄGG M B. Facilitated transport of CO2 in novel PVAm/PVA blend membrane [J]. Journal of Membrane Science, 2009, 340: 154-163. DOI: 10.1016/j.memsci.2009.05.019. [50] QIAN Z H, WANG Z, ZHANG C X, et al. PVAm–PIP/PS Composite membrane with high performance for CO2/N2 separation [J]. AIChE Journal, 2013, 59(1): 215-228. DOI: 10.1002/aic.13781. [51] 胡建根, 童家麟, 茅建波, 等. 典型燃煤锅炉深度调峰能力比较研究 [J]. 锅炉技术, 2019, 50(6): 59-64. DOI: 10.3969/j.issn.1672-4763.2019.06.012. HU J G, TONG J L, MAO J B, et al. The research of the comparision of deep peak regulation capacity for typical coal-fired boilers [J]. Boiler Technology, 2019, 50(6): 59-64. DOI: 10.3969/j.issn.1672-4763.2019.06.012. [52] 丛星亮, 谢红, 苏阳, 等. 660 MW超超临界二次再热机组深度调峰试验研究 [J]. 华电技术, 2021, 43(5): 64-69. DOI: 10.3969/j.issn.1674-1951.2021.05.010. CONG X L, XIE H, SU Y, et al. Experimental study on deep peak-load shaving of a 660 MW ultra-supercritical secondary reheating unit [J]. Huadian Technology, 2021, 43(5): 64-69. DOI: 10.3969/j.issn.1674-1951.2021.05.010. [53] 孙立本, 张少成, 许冰, 等. 66 kV固体电蓄热装置在火电机组深度调峰中的应用 [J]. 华电技术, 2018, 40(7): 38-39,42. DOI: 10.3969/j.issn.1674-1951.2018.07.011. SUN L B, ZHANG S C, XU B, et al. Application of 66 kV solid electric heat storage device in vigorous peak-load regulation of thermal power units [J]. Huadian Technology, 2018, 40(7): 38-39,42. DOI: 10.3969/j.issn.1674-1951.2018.07.011. [54] 童家麟, 洪庆, 吕洪坤, 等. 电源侧储能技术发展现状及应用前景综述 [J]. 华电技术, 2021, 43(7): 17-23. DOI: 10.3969/j.issn.1674-1951.2021.07.003. TONG J L, HONG Q, LÜ H K, et al. Review on development status and application prospect of power side energy storage technology [J]. Huadian Technology, 2021, 43(7): 17-23. DOI: 10.3969/j.issn.1674-1951.2021.07.003. [55] MAHMOUD M, RAMADAN M, OLABI A G, et al. A review of mechanical energy storage systems combined with wind and solar applications [J]. Energy Conversion and Management, 2020, 210: 112670. DOI: 10.1016/j.enconman.2020.112670. [56] 薛飞宇, 梁双印. 飞轮储能核心技术发展现状与展望 [J]. 节能, 2020, 39(11): 119-122. DOI: 10.3969/j.issn.1004-7948.2020.11.037. XUE F Y, LIANG S Y. Development status and prospect of core technology of flywheel energy storage system [J]. Energy Conservation, 2020, 39(11): 119-122. DOI: 10.3969/j.issn.1004-7948.2020.11.037. [57] KALDELLIS J K, ZAFIRAKIS D. Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency [J]. Energy, 2007, 32(12): 2295-2305. DOI: 10.1016/j.energy.2007.07.009. [58] 陈利平. 电力生产安全事故统计与分析 [J]. 电力设备管理, 2021(4): 106-108. CHEN L P. Statistics and analysis of safety accidents in electric power production [J]. Electric Power Equipment Management, 2021(4): 106-108. [59] 刘文毅, 杨勇平, 张昔国, 等. 压缩空气蓄能(CAES)电站及其现状和发展趋势 [J]. 山东电力技术, 2007(2): 10-14. DOI: 10.3969/j.issn.1007-9904.2007.02.003. LIU W Y, YANG Y P, ZHANG X G, et al. Present situation and development trend of compressed air energy storage (CAES) power plant [J]. Shandong Electric Power, 2007(2): 10-14. DOI: 10.3969/j.issn.1007-9904.2007.02.003. [60] 张雨檬. 可逆固体氧化物燃料电池-储能系统概念设计与应用场景识别 [D]. 北京: 华北电力大学(北京), 2021. DOI: 10.27140/d.cnki.ghbbu.2021.000032. ZHANG Y M. Conceptual design and applications identification of reversible solid oxide cell stack based energy storage system [D]. Beijing: North China Electric Power University (Beijing), 2021. DOI: 10.27140/d.cnki.ghbbu.2021.000032. [61] 朱冕, 赵加佩, 李欣珂, 等. 可逆固体氧化物燃料电池(rSOFC)技术的研究进展 [J]. 电源技术, 2020, 44(3): 469-474. DOI: 10.3969/j.issn.1002-087X.2020.03.040. ZHU M, ZHAO J P, LI X K, et al. Research status and prospects of reversible solid oxide fuel cell (rSOFC) technology [J]. Chinese Journal of Power Sources, 2020, 44(3): 469-474. DOI: 10.3969/j.issn.1002-087X.2020.03.040. [62] KUSKO A, DEDAD J. Stored energy short-term and long-term energy storage methods [J]. IEEE Industry Applications Magazine, 2007, 13(4): 66-72. DOI: 10.1109/MIA.2007.4283511. [63] NAGAYA S, HIRANO N, ADACHI E, et al. Development of cost-reduction SMES for load fluctuation compensation and frequency control [J]. Journal of the Cryogenic Society of Japan, 2005, 40(5): 159-166. DOI: 10.2221/jcsj.40.159. [64] ZHU J H, CHEN P P, GU C H, et al. Techno-economic analysis of MJ class high temperature Superconducting Magnetic Energy Storage (SMES) systems applied to renewable power grids [J]. Global Energy Interconnection, 2018, 1(2): 172-178. DOI: 10.14171/j.2096-5117.gei.2018.02.011. [65] BECK F, RÜETSCHI P. Rechargeable batteries with aqueous electrolytes [J]. Electrochimica Acta, 2000, 45: 2467-2482. DOI: 10.1016/S0013-4686(00)00344-3. [66] LUO X, WANG J H, DOONER M, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation [J]. Applied Energy, 2015, 137: 511-536. DOI: 10.1016/j.apenergy.2014.09.081. [67] 姚少勇, 王宝良, 李英. 锅炉等离子点火与气化微油点火技术的安全性分析 [J]. 河北电力技术, 2008(4): 28-30. DOI: 10.3969/j.issn.1001-9898.2008.04.011. YAO S Y, WANG B L, LI Y. Safety analysis on plasma and gasification micro-diesel ignition technology of the boiler [J]. Hebei Electric Power, 2008(4): 28-30. DOI: 10.3969/j.issn.1001-9898.2008.04.011. [68] 王鑫明, 王庆, 寻志伟, 等. 应用富氧燃烧技术提高火电机组调峰能力 [J]. 上海电气技术, 2019, 12(2): 19-22. DOI: 10.3969/j.issn.1674-540X.2019.02.006. WANG X M, WANG Q, XUN Z W, et al. Application of oxygen-enriched combustion technology for enhancement of peaking capability of thermal power sets [J]. Journal of Shanghai Electric Technology, 2019, 12(2): 19-22. DOI: 10.3969/j.issn.1674-540X.2019.02.006. [69] 罗聪. 深度调峰工况下锅炉燃烧优化控制 [D]. 北京: 华北电力大学, 2020. DOI: 10.27139/d.cnki.ghbdu.2020.000491. LUO C. Optimal control of boiler combustion under deep peak load regulation [D]. Beijing: North China Electric Power University, 2020. DOI: 10.27139/d.cnki.ghbdu.2020.000491. [70] WU X, SHEN J, LI Y G, et al. Fuzzy modeling and stable model predictive tracking control of large-scale power plants [J]. Journal of Process Control, 2014, 24(10): 1609-1626. DOI: 10.1016/j.jprocont.2014.08.007. [71] 江忆. 光储直柔−助力实现零碳电力的新型建筑配电系统 [J]. 暖通空调, 2021, 51(10): 1-12. JIANG Y. PSDF (Photovoltaic, Storage, DC, Flexible)-A new type of building power distribution system for zero carbon power system [J]. Heating Ventilating & Air Conditioning, 2021, 51(10): 1-12. [72] 李永刚, 韩冰. 低压直流配电系统保护研究综述 [J]. 华北电力大学学报, 2020, 47(1): 17-23+41. DOI: 10.3969/j.ISSN.1007-2691.2020.01.03. LI Y G, HAN B. Review on protection of LVDC distribution system research [J]. Journal of North China Electric Power University, 2020, 47(1): 17-23+41. DOI: 10.3969/j.ISSN.1007-2691.2020.01.03. [73] 马钊, 安婷, 尚宇炜. 国内外配电前沿技术动态及发展 [J]. 中国电机工程学报, 2016, 33(6): 1552-1567+1768. DOI: 10.13334/j.0258-8013.pcsee.2016.06.011. MA Z, AN T, SHANG Y W. State of the art and development trends of power distribution technologies [J]. Proceedings of the CSEE, 2016, 33(6): 1552-1567+1768. DOI: 10.13334/j.0258-8013.pcsee.2016.06.011. [74] 杜彦缤, 杜兆文, 吕恒琪. 直流配电系统可行性研究 [J]. 电子技术与软件工程, 2015(9): 119. DU Y B, DU Z W, LÜ H Q. Feasibility study of DC power distribution system [J]. Electronic Technology & Software Engineering, 2015(9): 119.