• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新能源系统中双储能耦合燃煤机组的应用策略研究

郭宬昊 谢子硕 王金星 刘畅

郭宬昊, 谢子硕, 王金星, 刘畅. 新能源系统中双储能耦合燃煤机组的应用策略研究[J]. 南方能源建设, 2022, 9(3): 62-71. doi: 10.16516/j.gedi.issn2095-8676.2022.03.007
引用本文: 郭宬昊, 谢子硕, 王金星, 刘畅. 新能源系统中双储能耦合燃煤机组的应用策略研究[J]. 南方能源建设, 2022, 9(3): 62-71. doi: 10.16516/j.gedi.issn2095-8676.2022.03.007
GUO Chenghao, XIE Zishuo, WANG Jinxing, LIU Chang. Research on Operation Strategy of the Application of Dual Energy Storage Coupled with Coal-Fired Units in New Energy Power System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 62-71. doi: 10.16516/j.gedi.issn2095-8676.2022.03.007
Citation: GUO Chenghao, XIE Zishuo, WANG Jinxing, LIU Chang. Research on Operation Strategy of the Application of Dual Energy Storage Coupled with Coal-Fired Units in New Energy Power System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 62-71. doi: 10.16516/j.gedi.issn2095-8676.2022.03.007

新能源系统中双储能耦合燃煤机组的应用策略研究

doi: 10.16516/j.gedi.issn2095-8676.2022.03.007
基金项目: 河北省自然科学基金项目“固体垃圾调质抑制化学链燃烧生成二噁英的作用机制”(E2020502007);中央高校基金项目“铁基化学链燃烧抑制二噁英生成机制研究”(2020MS103)
详细信息
    作者简介:

    郭宬昊,2002-,男,河北邢台人,本科在读,主要从事热能工程及储能技术相关研究(e-mail)chenghao_guo2002@163.com

    谢子硕,2002-,男,安徽合肥人,本科在读,主要从事动力机械及储能技术相关研究(e-mail)1599920936@qq.com

    王金星,1985-,男,河北唐山人,博士,博士后,讲师,主要从事燃煤热电联产系统灵活运行及储能参数优化设计研究(e-mail)wangruoguang860928@126.com

    刘畅,1989-,女,辽宁大连人,博士,助理研究员,主要从事可再生能源多能互补及储能技术研究(e-mail)liuchang_2017@sina.cn

    通讯作者:

    刘畅,(e-mail)liuchang_2017@sina.cn

  • 中图分类号: TM61; TM73

Research on Operation Strategy of the Application of Dual Energy Storage Coupled with Coal-Fired Units in New Energy Power System

  • 摘要:   目的  随着新能源电力消费比例不断提高,燃煤机组耦合双储能技术的能源系统发展受到广泛关注。  方法  文章基于能源系统组成、储能技术特性、项目示范情况以及技术瓶颈等方面的分析,针对风电、光伏嵌入下双储能技术耦合燃煤机组参与电力系统调峰应用开展了运行控制策略研究。  结果  双储能技术耦合燃煤机组可通过不同的结构组成、运行策略优化有效解决新能源系统运行稳定性、能源高效利用以及技术经济性等问题,但目前尚未到实现大规模商业化应用阶段。  结论  双储能耦合燃煤机组在新能源系统中的推广应用,需要对双储能技术的策略优化及储能技术本身的发展突破方面不断开展工作。
  • 图  1  风电嵌入下的双储能型系统组成

    Fig.  1  Dual storage system composition under wind power embedding

    图  2  光伏嵌入下的双储能型系统组成

    Fig.  2  Dual storage system composition under photovoltaic embedding

    图  3  双新能源嵌入下的双储能型系统组成

    Fig.  3  dual energy storage system composition under dual new energy embedding

    图  4  蓄电池储能运行逻辑图

    Fig.  4  Operation logic diagram of battery

    图  5  蓄电池与超级电容构成的混合储能系统运行逻辑图

    Fig.  5  Operation logic diagram of hybrid energy storage system composed by battery and supercapacitor

    图  6  储热装置运行逻辑图

    Fig.  6  Operation logic diagram of thermal energy storage device

    表  1  燃煤机组耦合双储能系统的应用情况

    Tab.  1.   Application comparison of dual storage type systems

    项目地点燃煤机组容量储能类型储能设备容量储能系统运行策略储能系统解决的问题参考文献
    “三北”地区200 MW储热蓄电池131 MW5 MW多目标分层优化改善弃风消纳和经济性[15]
    700 MW抽水蓄能电池储能300 MW50 MW阶梯型碳交易机制提高运行经济性[34]
    山东330 MW飞轮储能锂电池4.5 MW22 MW一次调频控制策略提高机组一次调频的安全性和经济性[35]
    600 MW飞轮储能蓄电池6 MW15 MW模糊控制优化提高调频质量、运行安全性和经济性[36]
    国外某地400 MW飞轮储能锂电池11.5 MW28.4 MW系统容量优化提高运行经济性[37]
    下载: 导出CSV
  • [1] 汪宁渤, 马明, 强同波, 等. 高比例新能源电力系统的发展机遇、挑战及对策 [J]. 中国电力, 2018, 51(1): 29-35+50. DOI:  10.11930/j.issn.1004-9649.201711248.

    WANG N B, MA M, QIANG T B, et al. High-penetration new energy power system development: challenges, opportunities and countermeasures [J]. Electric Power, 2018, 51(1): 29-35+50. DOI:  10.11930/j.issn.1004-9649.201711248.
    [2] 杨帆, 张晶杰. 碳达峰碳中和目标下我国电力行业低碳发展现状与展望 [J]. 环境保护, 2021, 49(Supp.2): 9-14. DOI:  10.14026/j.cnki.0253-9705.2021.z2.001.

    YANG F, ZHANG J J. The status and prospect of low-carbon development of electric power industry in China under carbon peak and carbon neutrality targets [J]. Environmental Protection, 2021, 49(Supp.2): 9-14. DOI:  10.14026/j.cnki.0253-9705.2021.z2.001.
    [3] 张正陵. 中国“十三五”新能源并网消纳形势、对策研究及多情景运行模拟分析 [J]. 中国电力, 2018, 51(1): 1-9. DOI:  10.11930/j.issn.1004-9649.201711237.

    ZHANG Z L. Research on situation and countermeasures of new energy integration in the 13th Five-Year Plan period and its multi-scenario simulation [J]. Electric Power, 2018, 51(1): 1-9. DOI:  10.11930/j.issn.1004-9649.201711237.
    [4] 王金星. 大型燃煤热电联产系统研究现状和展望 [J]. 华北电力大学学报(自然科版), 2019, 46(6): 90-98. DOI:  10.3969/j.ISSN.1007-2691.2019.06.12.

    WANG J X. Research status and outlook of large coal-fired cogeneration system [J]. Journal of North China Electric Power University (Natural Science Edition), 2019, 46(6): 90-98. DOI:  10.3969/j.ISSN.1007-2691.2019.06.12.
    [5] 郭丰慧, 胡林献, 周升彧. 基于二级热网储热式电锅炉调峰的弃风消纳调度模型 [J]. 电力系统自动化, 2018, 42(19): 50-56. DOI:  10.7500/AEPS20180130009.

    GUO F H, HU L X, ZHOU S Y. Dispatching model of wind power accommodation based on heat storage electric boiler for peak-load regulation in secondary heat supply network [J]. Automation of Electric Power Systems, 2018, 42(19): 50-56. DOI:  10.7500/AEPS20180130009.
    [6] 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析 [J]. 储能科学与技术, 2021, 10(5): 1679-1686. DOI:  10.19799/j.cnki.2095-4239.2021.0283.

    HE L X, LI W Y. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. DOI:  10.19799/j.cnki.2095-4239.2021.0283.
    [7] 张东辉, 徐文辉, 门锟, 等. 储能技术应用场景和发展关键问题 [J]. 南方能源建设, 2019, 6(3): 1-5. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.001.

    ZHANG D H, XU W H, MEN K, et al. Energy storage technology application scenarios and key issues of development [J]. Southern Energy Construction, 2019, 6(3): 1-5. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.001.
    [8] 任大伟, 金晨, 侯金鸣, 等. 基于时序运行模拟的新能源配置储能替代火电规划模型 [J]. 中国电力, 2021, 54(7): 18-26. DOI:  10.11930/j.issn.1004-9649.202009017.

    REN D W, JIN C, HOU J M, et al. A planning model for new energy allocation storage to replace thermal power based on time-series operation simulation [J]. Electric Power, 2021, 54(7): 18-26. DOI:  10.11930/j.issn.1004-9649.202009017.
    [9] 马会萌, 李蓓, 李建林, 等. 面向经济评估的电池储能系统工况特征量嵌入性研究 [J]. 电力系统保护与控制, 2017, 45(22): 70-77. DOI:  10.7667/PSPC161724.

    MA H M, LI B, LI J L, et al. Research on the embeddedness of the characteristic quantity of the working condition of battery energy storage system for economic evaluation [J]. Power System Protection and Control, 2017, 45(22): 70-77. DOI:  10.7667/PSPC161724.
    [10] LI Y H, WANG J X, GU C J, et al. Investment optimization of grid-scale energy storage for supporting different wind power utilization levels [J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(6): 1721-1734. DOI:  10.1007/s40565-019-0530-9.
    [11] 李笑竹, 王维庆, 王海云, 等. 基于鲁棒优化的风光储联合发电系统储能配置策略 [J]. 太阳能学报, 2020, 41(8): 67-78.

    LI X Z, WANG W Q, WANG H Y, et al. Energy storage allocation strategy of wind-solar-storage combined system based on robust optimization [J]. Journal of Solar Energy, 2020, 41(8): 67-78.
    [12] 刘宇宸. 飞轮-蓄电池混合储能系统调频特性研究 [D]. 北京: 华北电力大学(北京), 2021. DOI: 10.27140/d.cnki.ghbbu.2021.001388.

    LIU Y C. Research on frequency modulation characteristics of flywheel-battery hybrid energy storage system [D]. Beijing: North China Electric Power University (Beijing), 2021. DOI: 10.27140/d.cnki.ghbbu. 2021.001388.
    [13] 杨子龙, 宋振浩, 潘静, 等. 分布式光伏/储能系统多运行模式协调控制策略 [J]. 中国电机工程学报, 2019, 39(8): 2213-2220. DOI:  10.13334/j.0258-8013.pcsee.182342.

    YANG Z L, SONG Z H, PAN J, et al. Multi-operation mode coordination control strategy for distributed PV/energy storage system [J]. Chinese Journal of Electrical Engineering, 2019, 39(8): 2213-2220. DOI:  10.13334/j.0258-8013.pcsee.182342.
    [14] 邢志同. 电池储能协调电采暖消纳弃风的运行控制与配置优化 [D]. 吉林: 东北电力大学, 2018.

    XING Z T. Operational control and configuration optimization of battery energy storage coordinating with electric heating to consume wind curtailment [D]. Jilin: Northeast Electric Power University, 2018.
    [15] 李军徽, 付英男, 李翠萍, 等. 提升风电消纳的储热电混合储能系统经济优化配置 [J]. 电网技术, 2020, 44(12): 4547-4557. DOI:  10.13335/j.1000-3673.pst.2020.0185a.

    LI J H, FU Y N, LI C P, et al. Economic optimal configuration of hybrid energy storage system for improving wind power consumption [J]. Power System Technology, 2020, 44(12): 4547-4557. DOI:  10.13335/j.1000-3673.pst.2020.0185a.
    [16] 付英男. 提高风电消纳的热电混合储能系统优化控制与配置 [D]. 吉林: 东北电力大学, 2020. DOI: 10.27008/d.cnki.gdbdc.2020.000187.

    FU Y N. Optimal method of control and configuration for thermo/electric hybrid energy storage system to improving wind power integration [D]. Jilin: Northeast Electric Power University, 2020. DOI: 10.27008/d.cnki.gdbdc. 2020. 000187.
    [17] 朱炳铨, 钱韦廷, 张俊, 等. 考虑风电消纳的电热混合储能系统优化定容方法 [J]. 电力建设, 2020, 41(12): 16-24. DOI:  10.12204/j.issn.1000-7229.2020.12.002.

    ZHU B Q, QIAN W T, ZHANG J, et al. Optimal capacity setting method of electric-thermal hybrid energy storage system considering wind power consumption [J]. Power Construction, 2020, 41(12): 16-24. DOI:  10.12204/j.issn.1000-7229.2020.12.002.
    [18] 李敏超, 杨俊友, 韩子娇, 等. 计及电热混合储能的风电消纳低碳经济调度模型研究 [J]. 东北电力技术, 2020, 41(5): 53-59+62. DOI:  10.3969/j.issn.1004-7913.2020.05.014.

    LI M C, YANG J Y, HAN Z J, et al. Study on low-carbon economic dispatching model for wind power accommodation with electrothermal hybrid energy storage [J]. Northeast Electric Power Technology, 2020, 41(5): 53-59+62. DOI:  10.3969/j.issn.1004-7913.2020.05.014.
    [19] 杨玉龙, 李湃, 黄越辉, 等. 面向弃风消纳的电储能-热电分级协调优化方法 [J]. 中国电力, 2020, 53(12): 127-135. DOI:  10.11930/j.issn.1004-9649.202002130.

    YANG Y L, LI P, HUANG Y H, et al. A hierarchical and coordinated optimization method of electric energy storage and thermoelectric power for abandoned wind power consumption [J]. Electric Power, 2020, 53(12): 127-135. DOI:  10.11930/j.issn.1004-9649.202002130.
    [20] WANG H C, YIN W S, ABDOLLAHI E. , et al. Modelling and optimization of CHP based district heating system with renewable energy production and energy storage [J]. Applied energy, 2015, 159(Dec.1): 401-421. DOI:  10.1016/j.apenergy.2015.09.020.
    [21] KASTURI K. , NAYAK C. K. , PATNAIK S. , et al Strategic integration of photovoltaic, battery energy storage & amp; switchable capacitor for multi-objective optimization of low voltage electricity grid: assessing grid benefits [J]. Renewable Energy Focus, 2022(prepublish). DOI:  10.1016/j.ref.2022.02.006.
    [22] LI P, HU Q Y, SUN Y, et al. Thermodynamic and economic performance analysis of heat and power cogeneration system based on advanced adiabatic compressed air energy storage coupled with solar auxiliary heat [J]. Journal of Energy Storage, 2021, 42: 103089. DOI:  10.1016/j.est.2021.103089.
    [23] 胡基栋. 光储直流微电网运行协调控制技术研究 [D]. 呼和浩特: 内蒙古工业大学, 2021. DOI: 10.27225/d.cnki.gnmgu.2021.000462.

    HU J D. Research on operation coordination control technology of photovoltaic and storage DC microgrid [D]. Hohhot: Inner Mongolia University of Technology, 2021. DOI: 10.27225/d.cnki.gnmgu.2021. 000462.
    [24] 乔亮波, 张晓虎, 孙现众, 等. 电池-超级电容器混合储能系统研究进展 [J]. 储能科学与技术, 2022, 11(1): 98-106. DOI:  10.19799/j.cnki.2095-4239.2021.0229.

    QIAO L B, ZHANG X H, SUN X Z, et al. Research progress of battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. DOI:  10.19799/j.cnki.2095-4239.2021.0229.
    [25] 姚海涛. 混合储能在风光互补发电系统中的容量优化研究 [D]. 镇江: 江苏大学, 2021. DOI: 10.27170/d.cnki.gjsuu.2021.001832.

    YAO H T. Capacity optimization of hybrid energy storage in wind solar hybrid power generation system [D]. Zhenjiang: Jiangsu University, 2021. DOI: 10.27170/d.cnki.gjsuu.2021.001832.
    [26] 吴瑞鹏, 张程翔. 基于混合储能的风光储联合发电系统优化研究 [J]. 应用能源技术, 2022(3): 47-51. DOI:  10.3969/j.issn.1009-3230.2022.03.014.

    WU R P, ZHANG C X. Research on optimization of wind-solar- storage hybrid generation systems based on hybrid energy storage [J]. Applied Energy Technology, 2022(3): 47-51. DOI:  10.3969/j.issn.1009-3230.2022.03.014.
    [27] GUO S, HE Y, PEI H, et al. The multi-objective capacity optimization of wind-photovoltaic-thermal energy storage hybrid power system with electric heater [J]. Solar Energy, 2020, 195: 138-149. DOI:  10.1016/j.solener.2019.11.063.
    [28] 郑琼, 江丽霞, 徐玉杰, 等. 碳达峰、碳中和背景下储能技术研究进展与发展建议 [J]. 中国科学院院刊, 2022, 37(4): 529-540. DOI:  10.16418/j.issn.1000-3045.20220311001.

    ZHENG Q, JIANG L X, XU Y J, et al. Research progress and development suggestions on energy storage technology in the context of carbon peaking and carbon neutrality [J]. Journal of the Chinese Academy of Sciences, 2022, 37(4): 529-540. DOI:  10.16418/j.issn.1000-3045.20220311001.
    [29] 刘胜崇, 帕孜来·马合木提, 葛震君. 基于模糊控制的蓄电池系统储能单元SOC均衡方法 [J]. 现代电子技术, 2020, 43(24): 135-139. DOI:  10.16652/j.issn.1004-373x.2020.24.034.

    LIU S C, PAZILAI M, GE Z J. Fuzzy control-based SOC equalization method for battery system energy storage unit [J]. Modern Electronics Technology, 2020, 43(24): 135-139. DOI:  10.16652/j.issn.1004-373x.2020.24.034.
    [30] 史永胜, 王雪丽, 李娜, 等. 用于蓄电池储能的双向DC-DC变换器的实现 [J]. 电子器件, 2018, 41(2): 329-332. DOI:  10.3969/j.issn.1005-9490.2018.02.010.

    SHI Y S, WANG X L, LI N, et al. Implementation of a bidirectional DC-DC converter for battery energy storage [J]. Electronic Devices, 2018, 41(2): 329-332. DOI:  10.3969/j.issn.1005-9490.2018.02.010.
    [31] 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展 [J]. 储能科学与技术, 2022, 11(3): 1052-1076. DOI:  10.19799/j.cnki.2095-4239.2022.0105.

    CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021 [J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. DOI:  10.19799/j.cnki.2095-4239.2022.0105.
    [32] 张健, 徐玉杰, 李斌, 等. 分布式热电联产系统装机容量及运行策略分析 [J]. 储能科学与技术, 2019, 8(1): 83-91. DOI:  10.12028/j.issn.2095-4239.2018.0190.

    ZHANG J, XU Y J, LI B, et al. Analysis of installed capacity and operation strategy of distributed cogeneration system [J]. Energy Storage Science and Technology, 2019, 8(1): 83-91. DOI:  10.12028/j.issn.2095-4239.2018.0190.
    [33] 周科, 李银龙, 李明皓, 等. 燃煤发电-物理储热耦合技术研究进展与系统调峰能力分析 [J]. 洁净煤技术, 2022, 28(3): 159-172. DOI:  10.13226/j.issn.1006-6772.CC22010501.

    ZHOU K, LI Y L, LI M H, et al. Research progress of coal-fired power generation-physical thermal storage coupling technology and analysis of system peaking capacity [J]. Clean Coal Technology, 2022, 28(3): 159-172. DOI:  10.13226/j.issn.1006-6772.CC22010501.
    [34] 车泉辉, 吴耀武, 祝志刚, 等. 基于碳交易的含大规模光伏发电系统复合储能优化调度 [J]. 电力系统自动化, 2019, 43(3): 76-82+154. DOI:  10.7500/AEPS20180113002.

    CHE Q H, WU Y W, ZHU Z G, et al. Optimal dispatching of composite energy storage with large-scale photovoltaic power generation system based on carbon trading [J]. Power System Automation, 2019, 43(3): 76-82+154. DOI:  10.7500/AEPS20180113002.
    [35] 仵华南, 李华东, 李昌卫, 等. 用混合储能辅助核电一次调频控制策略研究 [J]. 山东电力技术, 2022, 49(3): 14-19. DOI:  10.3969/j.issn.1007-9904.2022.03.003.

    WU H N, LI H D, LI C W, et al. Research on primary frequency control strategy of nuclear power generation with hybrid energy storage assistance [J]. Shandong Power Technology, 2022, 49(3): 14-19. DOI:  10.3969/j.issn.1007-9904.2022.03.003.
    [36] 韩健民, 薛飞宇, 梁双印, 等. 模糊控制优化下的混合储能系统辅助燃煤机组调频仿真研究 [J]. 储能科学与技术: 1-12. DOI:  10.19799/j.cnki.2095-4239.2021.0664.

    HAN J M, XUE F Y, LIANG S Y, et al. Simulation study of hybrid energy storage system assisted coal-fired unit frequency regulation under fuzzy control optimization [J]. Energy Storage Science and Technology: 1-12. DOI:  10.19799/j.cnki.2095-4239.2021.0664.
    [37] 杨文强, 常彬. 计及多影响因素的发电侧混合储能系统容量配置方法及配置工具研究 [J/OL]. 储能科学与技术: 1-13. (2022-04-08) [2022-07-30]. DOI: 10.19799/j.cnki.2095-4239.2022.0065. https://esst.cip.com.cn/CN/Y2022/V/I/1.

    YANG W Q, CHANG B. Capacity allocation methods and allocation tools for generation-side hybrid energy storage systems with multiple influencing factors [J]. Energy Storage Science and Technology: 1-13. (2022-04-08) [2022-07-30]. DOI: 10.19799/j.cnki.2095-4239.2022.0065. https://esst.cip.com.cn/CN/Y2022/V/I/1.
    [38] DING J, XU Y J, CHEN H S, et al. Value and economic estimation model forgrid-scale energy storage in monopoly power markets [J]. Applied Energy, 2019, 240(Apr.15): 986-1002. DOI:  10.1016/j.apenergy.2019.02.063.
    [39] ZHAO H R, LU H, WANG X J, et al. Research on comprehensive value of electrical energy storage in CCHP microgrid with renewable energy based on robust optimization [J]. Energies, 2020, 13(24): 6526. DOI:  10.3390/en13246526.
    [40] 陆昊. 新型电力系统中储能配置优化及综合价值测度研究 [D]. 北京: 华北电力大学(北京), 2021. DOI: 10.27140/d.cnki.ghbbu. 2021.000086.

    LU H. Research on the energy storage plan optimization and comprehensive value measurement in the new power system [D]. Beijng: North China Electric Power University (Beijing), 2021. DOI: 10.27140/ d.cnki.ghbbu.2021.000086.
    [41] 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用 [J]. 储能科学与技术, 2021, 10(5): 1477-1485. DOI:  10.19799/j.cnki.2095-4239.2021.0389.

    CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality [J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485. DOI:  10.19799/j.cnki.2095-4239.2021.0389.
  • [1] 王帆, 李宾斯, 夏同令, 彭敏, 汪少勇.  广东地区2×600 MW级燃煤机组磷酸铁锂电池储能辅助调频经济性研究 . 南方能源建设, 2023, 10(6): 71-77. doi: 10.16516/j.gedi.issn2095-8676.2023.06.008
    [2] 钟莹.  电池储能参与燃煤发电机组AGC辅助服务经济分析 . 南方能源建设, 2023, 10(6): 64-70. doi: 10.16516/j.gedi.issn2095-8676.2023.06.007
    [3] 陈雷, 文婷.  考虑调峰调频双重约束的储能规划方法研究 . 南方能源建设, 2023, 10(2): 62-70. doi: 10.16516/j.gedi.issn2095-8676.2023.02.009
    [4] 张少强, 孙晨阳, 余落杭, 樊小梅, 潘杜娟, 魏书洲, 周兴.  燃煤发电机组灵活性改造的研究进展综述 . 南方能源建设, 2023, 10(2): 48-54. doi: 10.16516/j.gedi.issn2095-8676.2023.02.007
    [5] 熊甜, 刘兴业.  典型地下式市政工程电气设计要点探讨 . 南方能源建设, 2022, 9(S1): 92-98. doi: 10.16516/j.gedi.issn2095-8676.2022.S1.014
    [6] 邵建林, 郑明辉, 郭宬昊, 闫梦迪, 夏子晴, 许宏鹏, 魏书洲.  双碳目标下燃煤热电联产机组储能技术应用分析 . 南方能源建设, 2022, 9(3): 102-110. doi: 10.16516/j.gedi.issn2095-8676.2022.03.012
    [7] 文婷, 陈雷, 曾鹏骁, 刘云.  广东新型储能配套政策建议 . 南方能源建设, 2022, 9(4): 70-77. doi: 10.16516/j.gedi.issn2095-8676.2022.04.009
    [8] 田帅.  新能源风险投资全周期风险管理体系的构建 . 南方能源建设, 2022, 9(1): 40-46. doi: 10.16516/j.gedi.issn2095-8676.2022.01.006
    [9] 魏厚俊, 谢研, 孙亚坤, 韩玉鑫, 宋民航.  燃煤机组调峰过程中污染物排放特性及控制技术 . 南方能源建设, 2022, 9(3): 50-61. doi: 10.16516/j.gedi.issn2095-8676.2022.03.006
    [10] 徐伟轩.  基于燃煤机组供热改造方案技术经济性研究 . 南方能源建设, 2022, 9(3): 88-93. doi: 10.16516/j.gedi.issn2095-8676.2022.03.010
    [11] 徐宪龙, 张艺凡, 孙浩程, 赵浩腾, 赵国睿, 杨浩, 魏书洲.  飞轮储能技术及其耦合发电机组研究进展 . 南方能源建设, 2022, 9(3): 119-126. doi: 10.16516/j.gedi.issn2095-8676.2022.03.014
    [12] 胡韧, 叶锦韶, 戚永乐.  海上风电场对鸟类的影响及其危害预防 . 南方能源建设, 2021, 8(3): 1-7. doi: 10.16516/j.gedi.issn2095-8676.2021.03.001
    [13] 李峻, 祝培旺, 王辉, 仇晓龙.  基于高温熔盐储热的火电机组灵活性改造技术及其应用前景分析 . 南方能源建设, 2021, 8(3): 63-70. doi: 10.16516/j.gedi.issn2095-8676.2021.03.009
    [14] 王中夫.  基于区间建模的新能源电网无功优化策略 . 南方能源建设, 2021, 8(4): 95-106. doi: 10.16516/j.gedi.issn2095-8676.2021.04.013
    [15] 刘宇.  基于珠海发电厂的燃煤机组性能优化策略 . 南方能源建设, 2020, 7(S1): 78-81. doi: 10.16516/j.gedi.issn2095-8676.2020.S1.015
    [16] 张夏平.  天然气网络对含新能源电力系统短期调度运行影响 . 南方能源建设, 2019, 6(1): 1-7. doi: 10.16516/j.gedi.issn2095-8676.2019.01.001
    [17] 裴顺, 杨桂.  燃煤机组低负荷工况下安全稳定运行研究 . 南方能源建设, 2018, 5(S1): 19-24. doi: 10.16516/j.gedi.issn2095-8676.2018.S1.004
    [18] 郭祚刚, 雷金勇, 邓广义.  匹配新能源电能并网的压缩空气储能站性能研究 . 南方能源建设, 2018, 5(3): 26-32. doi: 10.16516/j.gedi.issn2095-8676.2018.03.004
    [19] 徐龙博.  大型电力设计院在新能源发电领域的发展战略思考 . 南方能源建设, 2016, 3(1): 58-62,69. doi: 10.16516/j.gedi.issn2095-8676.2016.01.013
    [20] 史正军, 刘苏, 朱浩骏, 邓婧, 李俊杰.  分布式储能设备在广东省的应用分析 . 南方能源建设, 2015, 2(2): 80-85. doi: 10.16516/j.gedi.issn2095-8676.2015.02.015
  • 加载中
图(6) / 表 (1)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  42
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-27
  • 录用日期:  2022-06-13
  • 修回日期:  2022-06-13
  • 网络出版日期:  2022-09-26
  • 刊出日期:  2022-09-25

新能源系统中双储能耦合燃煤机组的应用策略研究

doi: 10.16516/j.gedi.issn2095-8676.2022.03.007
    基金项目:  河北省自然科学基金项目“固体垃圾调质抑制化学链燃烧生成二噁英的作用机制”(E2020502007);中央高校基金项目“铁基化学链燃烧抑制二噁英生成机制研究”(2020MS103)
    作者简介:

    郭宬昊,2002-,男,河北邢台人,本科在读,主要从事热能工程及储能技术相关研究(e-mail)chenghao_guo2002@163.com

    谢子硕,2002-,男,安徽合肥人,本科在读,主要从事动力机械及储能技术相关研究(e-mail)1599920936@qq.com

    王金星,1985-,男,河北唐山人,博士,博士后,讲师,主要从事燃煤热电联产系统灵活运行及储能参数优化设计研究(e-mail)wangruoguang860928@126.com

    刘畅,1989-,女,辽宁大连人,博士,助理研究员,主要从事可再生能源多能互补及储能技术研究(e-mail)liuchang_2017@sina.cn

    通讯作者: 刘畅,(e-mail)liuchang_2017@sina.cn
  • 中图分类号: TM61; TM73

摘要:   目的  随着新能源电力消费比例不断提高,燃煤机组耦合双储能技术的能源系统发展受到广泛关注。  方法  文章基于能源系统组成、储能技术特性、项目示范情况以及技术瓶颈等方面的分析,针对风电、光伏嵌入下双储能技术耦合燃煤机组参与电力系统调峰应用开展了运行控制策略研究。  结果  双储能技术耦合燃煤机组可通过不同的结构组成、运行策略优化有效解决新能源系统运行稳定性、能源高效利用以及技术经济性等问题,但目前尚未到实现大规模商业化应用阶段。  结论  双储能耦合燃煤机组在新能源系统中的推广应用,需要对双储能技术的策略优化及储能技术本身的发展突破方面不断开展工作。

English Abstract

郭宬昊, 谢子硕, 王金星, 刘畅. 新能源系统中双储能耦合燃煤机组的应用策略研究[J]. 南方能源建设, 2022, 9(3): 62-71. doi: 10.16516/j.gedi.issn2095-8676.2022.03.007
引用本文: 郭宬昊, 谢子硕, 王金星, 刘畅. 新能源系统中双储能耦合燃煤机组的应用策略研究[J]. 南方能源建设, 2022, 9(3): 62-71. doi: 10.16516/j.gedi.issn2095-8676.2022.03.007
GUO Chenghao, XIE Zishuo, WANG Jinxing, LIU Chang. Research on Operation Strategy of the Application of Dual Energy Storage Coupled with Coal-Fired Units in New Energy Power System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 62-71. doi: 10.16516/j.gedi.issn2095-8676.2022.03.007
Citation: GUO Chenghao, XIE Zishuo, WANG Jinxing, LIU Chang. Research on Operation Strategy of the Application of Dual Energy Storage Coupled with Coal-Fired Units in New Energy Power System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 62-71. doi: 10.16516/j.gedi.issn2095-8676.2022.03.007
    • 随着经济的快速发展,由煤炭等化石资源短缺带来的能源需求和日益严重的环境污染逐渐成为全球关注的重点[1]。在碳达峰、碳中和目标背景下,积极推进新能源的发展与利用,能够有效控制和减少污染物排放及碳排放,减轻环境污染和温室效应,是解决能源与环境发展矛盾的最主要途径[2]

      当前风力发电与光伏发电作为主要的新能源发电方式,得到了快速发展。但由于风电和光伏发电出力具有很大的波动性和不确定性,电力系统尚不能完全适应新能源的大规模接入和消纳,导致了电网运行的不稳定性,也造成了较为严重的弃风、弃光等问题[3]。与此同时,原有燃煤机组在电力系统中仍发挥主导作用,对现有燃煤机组的灵活性改造工作成为解决新能源并网问题中的主要手段之一,特别是储能技术的发展为其跨时空的调节模式提供了可行性[4]

      储能技术在提高电网对新能源的消纳能力、电网调频、削峰填谷、提高电能质量和电力可靠性等方面具有重要作用,目前单一储能技术与燃煤机组的结合已在工程上取得了较好的实践[5-6]。常用的储能技术主要包括储热、蓄电池、抽水蓄能、飞轮储能、压缩空气储能等,专家学者通过开拓了遗传算法(GA)、粒子群优化算法(PSO)、飞蛾扑火算法(MFO)[7-11]等智能算法或其改进算法,已对储能系统的优化配置以及降低电网运行成本等方面开展了大量的工作。

      然而,由于新能源电力和电网功率需求不稳定,单一的储能形式往往难以完全匹配区域负荷对储能系统的要求。通过多、双储能系统的参数设计,取长补短,则能够进一步达到新能源系统的灵活调节效果。例如,刘宇宸[12]对飞轮储能与传统蓄电池储能系统构成的混合储能系统进行研究,发现飞轮–蓄电池混合储能系统在调节过程中不但可以灵活发挥蓄电池与飞轮储能各自在充放电方面的优势,更能快速、有效解决新能源并网发电引起的功率失衡与频率偏移等问题。杨子龙等[13]对由超级电容器和蓄电池组成的储能系统开展了研究,提出了平抑功率波动和峰谷电价套利两种运行模式的协调运行策略,该系统能够根据光伏电力的实时波动情况,对系统源、网、荷、储能量实施合理有效的管理。

      目前,燃煤机组改造调峰多聚焦于从热能角度实现能量的高效利用,且储能技术类型多样,因此对于双储能或多种储能技术与燃煤机组耦合的灵活性运行研究还有待不断深入。因此,本文将从系统结构、运行策略以及储能技术协同燃煤机组调节消纳新能源的控制逻辑、项目示范等方面介绍燃煤机组耦合双储能系统的技术进展,为后续该类型能源系统的设计、改造优化提供理论指导。

    • 在发电侧布局双储能系统并耦合燃煤机组能够有效解决风电波动性和随机性给电网带来的不稳定、利用率低及弃风等问题,其代表性的系统结构及运行机制如图1所示。

      图  1  风电嵌入下的双储能型系统组成

      Figure 1.  Dual storage system composition under wind power embedding

      图1(a)所展示的系统中,通过电池储能与储热式电锅炉系统“削峰填谷”,能够使系统整体的调峰能力得到提高,减少系统弃风电量。系统结构包含了风电机组、常规机组、热电联产机组、电池储能、电锅炉和储热系统。储热式电锅炉配置储热系统可以实现能量在时间上的转移,在弃风时段,电锅炉满足供热的同时进行储热;在非弃风时段,储热系统放热供热。电池储能则利用其响应速度快、能量可双向流动的特点,实时响应电网调度指令进行充放电[14]

      此外,李军徽等[15]和付英男[16]对上述系统进行了优化研究,通过优化对电锅炉、电池储能的控制运行,当弃风消纳效率由65%提高10%时,系统年收益由原来的315.6万元增加到了773.9万元,极大地提高了储能装置的利用率与经济性,增加了系统的灵活性。朱炳铨等[17]针对上述系统结构中由电池储能、电锅炉和储热系统组成的电热混合储能系统进行分析,提出一种优化定容方法,相较于不安装储能设备时风电消纳率提高21.1%,总成本至少下降6万元,能够在有效提高风电利用率的同时保证系统的经济性。李敏超等[18]在上述系统较好消纳风电的基础上考虑碳交易机制下的碳减排情况,对比发现混合储能相较于单电储能或单热储能,在风电消纳水平增加3.83%~19.72%时,能够降低系统碳排放量50~380 t,减少碳排放成本0.1~0.76万元,有利于发挥系统的清洁低碳属性和经济性。

      图1(b)为利用电池储能和储热系统协调实现热电联产机组消纳弃风的系统组成。热电联产机组可以通过配置储热系统,显著增加其调峰能力,而风电机组则可以通过电池储能平抑其出力的波动性。由此,电池储能、储热系统和风电机组、热电联产机组共同通过电网交易中心完成日前深度调峰交易,交易中心基于深度调峰协议价格,对电池储能、热电联产机组及其储热系统进行调度,实现对弃风电量的消纳。系统需要通过维持储热系统的蓄热量,保障系统的持续供热能力和多日连续调节能力[19]

    • 通过燃煤机组结合储能系统能够提高光伏电力的消纳能力,代表性的系统结构如图2所示。

      图  2  光伏嵌入下的双储能型系统组成

      Figure 2.  Dual storage system composition under photovoltaic embedding

      图2(a)系统由热电联产机组、常规机组、太阳能光伏、太阳能光热、电池储能及储热装置组成。储热装置和电池储能可用于满足热能和电力需求:热电联产机组、常规机组和光伏阵列产生的电力被输送到电网,同时电池储能将富余的光伏电力储存起来并用于低谷放电;热电联产机组和太阳能集热器产生的热量被分配到当地的热网或因富余而被储存起来,当热能需求较高但产热不足时,可通过储热系统释放热量来解决用户对热能的需求[20]图2(b)中的系统由常规火电机组、光伏阵列、电池储能以及超级电容器组成,并且安装了智能控制器等智能设备,可根据能量管理策略采取不同的储能运行方式[21]

      此外,Li Peng等[22]提出一种先进绝热压缩空气储能、储热与太阳能辅助热相结合的热电联产系统,通过合理分配系统产生的热能提高系统整体的效率;胡基栋[23]对光储微网系统并网进行研究,通过对光伏发电单元、储能单元以及并网单元的控制策略进行调整,实现源–网–储协调控制,保证系统稳定运行。

    • 由于风、光资源随时间变化具有互补性,因此将风电和光伏系统进行集成互补也是目前解决可再生能源消纳问题的重要途径之一,为目前最为常见的双新能源场景,同时辅以储能设备可进一步降低燃煤电厂调峰压力,为电力系统的灵活稳定运行提供保障。风光互补场景下,常见的配置有双储能装置的系统结构及运行情况如图3所示。

      图  3  双新能源嵌入下的双储能型系统组成

      Figure 3.  dual energy storage system composition under dual new energy embedding

      图3(a)中利用以电池储能与超级电容为代表组成的混合储能系统来改善风能和光伏并网发电的波动性。系统可以组合多个储能设备以缓解由风能和光伏并网所带来的不利影响。当用电需求小于电源总发电量时,可用储能设备进行储存,需求大于电源总发电量时放电满足负荷需求,实现削峰填谷,确保供电稳定[24]图3(b)中电负荷需求由新能源(光伏、风电)和常规火电机组满足,当风光互补发电系统产生的电能有富裕时,富裕的电能首先通过电解槽电解水制得氢气,所得氢气由储氢罐进行储存,随后可在燃料电池中输出电能;其次可以由电池储能储存富裕的电能。若系统产生的电能不足以满足用户电量需求,则由燃料电池和蓄电池辅助发电系统供电,进一步提高系统灵活性和能源利用效率[25]

      此外,吴瑞鹏等[26]提出一种含锂电池和超级电容的风光储联合发电系统,采用低通滤波器结合超级电容荷电状态二次反馈的控制策略能够有效提升混合储能系统的使用寿命,年成本降低了22.8%,提高了系统的经济性。郭苏等[27]提出了一种含电池储能和储热的风光热储能混合电力系统,该系统有效提高了输电效率,平准化度电成本(LCOE)由121.53美元/MWh降至107.75美元/MWh,具有较好的经济性。

    • 目前,我国在储能技术,包括蓄电池储能,储冷储热,超级电容器,抽水储能,压缩空气储能,飞轮储能以及氢储能等技术的基础研发和工程化方面均取得了重大进展[28]。根据储能技术特性,可主要将其划分为能量型储能和功率型储能,能量型储能技术比能量高,主要应用于高能量输入场景,典型的能量型储能如电池储能、抽水蓄能等;功率型储能技术比功率高,主要用于瞬间高功率输入场景,典型的功率型储能如超级电容储能、飞轮储能等。当储能系统并入电网时,可通过发挥其调节能力提高机组辅助消纳风电和光伏的能力,增强电网的稳定性。

      基于第1节典型应用场景,本节分别以能量型储能技术和功率型储能技术的代表储能形式,即蓄电池储能和超级电容器为例,通过控制逻辑分析储能技术参与新能源电力系统调节的一般规律。此外,储热作为一种有别于电储能的能量型储能代表形式,在本节的最后也对其开展了控制逻辑分析。

    • 蓄电池具有能量可双向流动、功率响应较快等优点,其在电网独立运行时主要作为压频控制单元稳定电网电压和频率,在电网不稳定时,进行相应的充放电处理,起到“削峰填谷”的作用。蓄电池在新能源系统中基本运行控制逻辑如图4所示[29-31],其中电网实际功率(能源系统实际输出功率)为$ {P}_{\mathrm{实}\mathrm{际}} $;用户的实际电负荷为$ {P}_{\mathrm{负}\mathrm{荷}} $。当能源系统实际输出功率大于用户的实际电负荷且蓄电池荷电状态SOC低于上限SOC蓄,max时,蓄电池进行充电;当能源系统实际输出功率小于用户的实际电负荷且SOC高于下限SOC蓄,min时,蓄电池进行放电;当能源系统实际输出功率等于用户的实际电负荷且蓄电池的SOC处于正常范围时,蓄电池不工作。

      图  4  蓄电池储能运行逻辑图

      Figure 4.  Operation logic diagram of battery

    • 超级电容器是一种非常重要的储能器件,有着循环寿命长、功率密度高、充放电速度快等优点。事实上,以超级电容器为代表的单一功率型储能控制逻辑与能量型储能并没有严格意义上的区分,可参照图4

      之所以将储能技术分为能量型和功率型,主要是因为能量型储能设备通常适用于对放电响应要求不高、放电时间较长的场景。若使其作为功率型储能以频繁、短时、大电流进行放电,则有损设备寿命。此时,则需要功率型储能来完善该部分充放电功能,提高系统的稳定性,延长蓄电池使用寿命。目前,能量型与功率型储能搭配构成混合储能,通过控制策略可实现能量的最优化利用。一个由蓄电池和超级电容器组成的混合储能系统的控制逻辑如图5

      图  5  蓄电池与超级电容构成的混合储能系统运行逻辑图

      Figure 5.  Operation logic diagram of hybrid energy storage system composed by battery and supercapacitor

    • 储热技术具有规模大、成本低、寿命长等优点,在电力、建筑、工业等领域得到广泛应用。单一储热装置与燃煤机组的配合运行逻辑如图6[31-33]所示,即当机组供热量大于热需求时,多余的热储存于储热罐,当机组供热量不足时,储热装置释热与机组一同供热;如果储热装置与机组供热仍不能满足供热需求,不足部分可由电锅炉等其他热源补足。

      图  6  储热装置运行逻辑图

      Figure 6.  Operation logic diagram of thermal energy storage device

      图1(a)所示,储热装置可以与蓄电装置协同燃煤机组实现新能源系统的电、热调节。此时,冗余的电力可以通过蓄电装置实现时间转移,也可通过电锅炉等设备被转化为热能,既可以平移新能源电力的波动性,也可帮助燃煤机组实现热电解耦。

    • 燃煤机组耦合双储能系统的典型应用情况如表1所示。

      表 1  燃煤机组耦合双储能系统的应用情况

      Table 1.  Application comparison of dual storage type systems

      项目地点燃煤机组容量储能类型储能设备容量储能系统运行策略储能系统解决的问题参考文献
      “三北”地区200 MW储热蓄电池131 MW5 MW多目标分层优化改善弃风消纳和经济性[15]
      700 MW抽水蓄能电池储能300 MW50 MW阶梯型碳交易机制提高运行经济性[34]
      山东330 MW飞轮储能锂电池4.5 MW22 MW一次调频控制策略提高机组一次调频的安全性和经济性[35]
      600 MW飞轮储能蓄电池6 MW15 MW模糊控制优化提高调频质量、运行安全性和经济性[36]
      国外某地400 MW飞轮储能锂电池11.5 MW28.4 MW系统容量优化提高运行经济性[37]

      目前,在新能源电力嵌入下,通过燃煤机组耦合双储能系统参与调峰的典型项目处于示范阶段,储能系统在新型电力系统中运行后,会给发电企业、电网公司、电力用户等利益主体带来显著的外部价值,例如提升传统火电机组的运行效率,减少燃料成本;减小高峰负荷对电力系统带来的压力;减少排放;促进新型电力系统从外延扩张型向内涵增效型转变等[38-39]。尽管通过表1可以看到,当双储能耦合燃煤机组在新能源系统中的运行策略得到充分优化时,可以有效改善一部分技术经济性问题,但由于储能系统的原材料储量、循环寿命及淘汰后设备和材料回收等问题导致的高成本问题,仍然是制约其大规模商业化应用的主要原因,尚需时间与技术迭代[40]

      尽管燃煤机组耦合双储能系统已有多项示范应用,距离其大规模商业化还存在来自储能技术的攻关挑战。其中,对于双储能系统在运行策略的配合及优化调度、储能容量配置及优化、功率分配等问题,仍是未来重要的研究方向。此外,储能技术本身的发展突破也同样重要,例如循环寿命、安全问题、成本问题、原材料存量以及回收问题则几乎是制约所有蓄电池储能推广的原因。要解决这些问题,可以通过明确政策导向,建设示范工程,建立长效机制,积极促进成本疏导等,来引领技术不断进步,有效推动产业应用[41]

    • 利用双储能技术耦合燃煤机组参与新能源电力系统调峰是应对新能源并网的有效方式之一。本文从系统结构、系统运行策略、储能技术调控逻辑、项目示范等方面介绍了双储能耦合燃煤机组系统在风力发电、光伏及以风–光集成为代表的双新能源系统中的应用策略情况,分析了双储能技术耦合燃煤机组参与新能源电力系统调节的一般规律,并通过对已示范/建成燃煤机组耦合双储能系统项目情况进行梳理,发现其距离大规模商业化应用,尚需时间与技术迭代。

参考文献 (41)

目录

    /

    返回文章
    返回