-
某类型300 MW燃煤机组原设计为单轴、高中压合缸、低压缸双分流、亚临界、一次中间再热、双缸双排汽、抽汽凝汽器式汽轮机。热网加热蒸汽汽源由汽轮机中压缸末级引出。额定采暖工况蒸汽压力为0.4 MPa,蒸汽温度264 ℃,压力调整范围0.25~0.55 MPa。该类型汽轮机组冬季供热热力系统图如图1所示。
-
该机组在供暖期,机组运行方式为以热定电,即首先满足供热要求,根据热负荷的变化来调整机组的发电功率。采暖供热采用二级换热闭式循环系统,在厂内设一级换热站,用汽机抽汽将热网循环水加热,在热用户附近设二级换热站,用高温热网循环水加热二次循环水向用户供热。
机组抽汽供热模型图如图2所示,机组抽汽供热的汽侧为汽轮机抽汽直接进入热网加热器进行加热,疏水回至凝汽器。水侧为热网回水加热后成为一级热网供水。
供热量计算公式[16]:
$$ Q=\left( {{H}_{2}—{H}_{1}} \right)q1{0}^{3} $$ (1) 式中:
Q ——供热量(kJ/h);
H1 ——进水焓(kJ/kg);
H2 ——出水焓(kJ/kg);
q ——水流量(t/h)。
-
机组高背压供热模型图如图3所示。对该类型燃煤机组进行高背压改造,实现了纯凝工况与供热工况低压缸双背压双转子互换。非供热期机组以抽汽凝汽方式运行,供热期间机组以抽汽凝汽背压方式运行。水网供热采用串联式两级加热系统:即热网循环水回水首先经过机组凝汽器进行第一级加热,吸收低压缸排汽余热,然后再经过机组热网加热器完成第二级加热,高温热水通过水网供水管道送至厂外换热站换热供向热用户。高温热水经热用户换热降温后,通过热网回水管回至机组凝汽器,构成一个水循环系统。
机组高背压供热的热网水加热形式为梯级加热,首先由汽机排汽在凝汽器中进行第一级加热,然后热网水分流一部分去其他机组,另一部分进入热网加热器由汽轮机抽汽进行第二级加热。
供热量计算公式:
$$ Q_{{\rm{A}}}=(H_{{\rm{A}} 2}-H_{{\rm{A}} 1}) q_{{\rm{A}} 1} 10^{3}+(H_{{\rm{A}} 4}-H_{{\rm{A}} 3}) q_{{\rm{A}} 2} 10^{3} $$ (2) 式中:
QA ——高背压方式供热量(kJ/h);
HA1 ——凝汽器进水焓(kJ/kg);
HA2 ——凝汽器出水焓(kJ/kg);
HA3 ——加热器进水焓(kJ/kg);
HA4 ——加热器出水焓(kJ/kg);
qA1 ——凝汽器水流量(t/h);
qA2 ——加热器水流量(t/h)。
-
机组切缸供热模型图如图4所示。对该类型燃煤机组进行切缸改造,实现了纯凝工况与供热工况低压缸切除互换。非供热期机组以抽汽凝汽方式运行,供热期间机组以切缸方式运行。供热汽源分为两部分对热网进行加热:其中机组切缸汽源供给大容量热网加热器,直接加热热网回水,高温热水通过水网供水管道送至厂外换热站换热供向热用户。另外机组抽汽与其他机组的小容量热网加热器相连,作为其他机组供热的补充汽源。
机组切缸供热的热网水分别在两个热网加热器中进行加热,其中一个加热器的汽源为切缸供汽,另一个加热器的汽源为汽轮机抽汽,两个热网加热器的出水汇合后作为一级热网供水。
供热量计算公式:
$$Q_{{\rm{B}}}=(H_{{\rm{B}} 2}-H_{{\rm{B}} 1}) q_{{\rm{B}} 1} 10^{3}+(H_{{\rm{B}} 4}-H_{{\rm{B}} 3}) q_{{\rm{B}} 2} 10^{3} $$ (3) 式中:
QB ——切缸方式供热量(kJ/h);
HB1 ——加热器1进水焓(kJ/kg);
HB2 ——加热器1出水焓(kJ/kg);
HB3 ——加热器2进水焓(kJ/kg);
HB4 ——加热器2出水焓(kJ/kg);
qB1 ——加热器1水流量(t/h);
qB2 ——加热器2水流量(t/h)。
-
根据三种供热方案计算出的供热量情况以及该地区供热经济性系数,将燃煤机组三种供热方案进行技术经济性比较,具体情况如表1~表4所示。
表 1 250 MW负荷下抽汽供热与160 MW负荷下抽汽供热比较
Table 1. Comparison between steam extraction heating under 250 MW load and steam extraction heating under 160 MW load
250 MW负荷下抽
汽供热量/(GJ·h−1)160 MW负荷下抽
汽供热量/(GJ·h−1)供热量差
值/(GJ·h−1)经济性差
值/(元·h−1)912 358 554 2 984 表 2 160 MW负荷下高背压供热与抽汽供热比较
Table 2. Comparison between high back pressure heating and steam extraction heating under 160 MW load
高背压供热量/
(GJ·h−1)抽汽供热量/
(GJ·h−1)供热量差值/
(GJ·h−1)经济性差值/
(元·h−1)1 088 358 730 3 935 表 3 160 MW负荷下切缸供热与抽汽供热比较
Table 3. Comparison between cylinder cutting heating and steam extraction heating under 160 MW load
切缸供热量/
(GJ·h−1)抽汽供热量/
(GJ·h−1)供热量差值/
(GJ·h−1)经济性差值/
(元·h−1)1 261 358 903 4 866 表 4 切缸供热与高背压供热比较
Table 4. Comparison between cylinder cutting heating and high back pressure heating
切缸供热量/
(GJ·h−1)高背压供热量/
(GJ·h−1)供热量差值/
(GJ·h−1)经济性差值/
(元·h−1)1 261 1 088 173 930 从表1、表2、表3可以看出,该类型300 MW燃煤机组仅靠抽汽进行供热时,受电负荷制约很大,但经历过切缸供热改造或高背压供热改造后,该问题得以解决,在160 MW负荷时,相比改造前的抽汽供热形式,供热能力及经济性都得到大幅提升。从表4可以看出,切缸供热与高背压供热相比较,供热能力及经济性有一定优势,机组的供热期调峰能力也更强,这是因为燃煤机组经过切缸改造后,排汽全部用于供热,消除了冷源损失。供热经济性差值比较图如图6所示。切缸供热还具有切换灵活,汽轮机本体改造范围小,改造费用低,运行维护成本低的优势。
Technical and Economic Study on Heating Transformation Scheme of Coal-Fired Units
-
摘要:
目的 为了解决目前燃煤机组面临的电负荷与热负荷矛盾突出的问题,保障机组冬季热源供给,有必要进行破除其热电耦合关系的供热改造方案的研究。 方法 对某类型300 MW燃煤机组的两种供热改造方式进行模型分析,比较机组改造前后的供热量等数据,研究符合生产条件的热电解耦供热改造方案。总结出了热电联产机组供热改造的经济效果。 结果 通过文中供热模型分析可知,燃煤机组仅靠抽汽进行供热,受电负荷制约很大,高电负荷时供热量为低电负荷时的2~3倍。当电负荷受限严重时,其供热量无法满足冬季供热需求。但机组经过高背压改造、切缸改造后,调峰能力增强,相同电负荷下其供热量增加到原来的3~4倍,有效解决了这一问题。 结论 文章研究成果对今后相同类型的燃煤机组供热改造具有借鉴意义。 Abstract:Introduction In order to solve the prominent contradiction between electric load and heat load faced by coal-fired units and ensure the heat source supply of units in winter, it is necessary to study the heating transformation scheme to break its thermoelectric coupling relationship. Method This paper made a model analysis of two heating transformation modes of a type of 300 MW coal-fired unit, compared the heating capacity and other data before and after the unit transformation, and studied the thermoelectric decoupling heating transformation scheme in line with the production conditions. And the economic effect of heating transformation of cogeneration units was summarized. Conclusion Through the analysis of the heating model in this paper, it can be seen that the coal-fired unit only relies on steam extraction for heating, which is greatly restricted by the power load. The heating capacity at high power load is 2~3 times that at low power load. When the electric load is severely limited, its heating capacity cannot meet the heating demand in winter. But after retrofit of high back pressure and modification of the cylinder, the capacity of peak shaving increases, and the heating capacity increases to 3~4 times under the same electric load, which effectively solved the problem. Result The research result can be used as a reference for the heating transformation of the same type of coal-fired units in the future. -
表 1 250 MW负荷下抽汽供热与160 MW负荷下抽汽供热比较
Tab. 1. Comparison between steam extraction heating under 250 MW load and steam extraction heating under 160 MW load
250 MW负荷下抽
汽供热量/(GJ·h−1)160 MW负荷下抽
汽供热量/(GJ·h−1)供热量差
值/(GJ·h−1)经济性差
值/(元·h−1)912 358 554 2 984 表 2 160 MW负荷下高背压供热与抽汽供热比较
Tab. 2. Comparison between high back pressure heating and steam extraction heating under 160 MW load
高背压供热量/
(GJ·h−1)抽汽供热量/
(GJ·h−1)供热量差值/
(GJ·h−1)经济性差值/
(元·h−1)1 088 358 730 3 935 表 3 160 MW负荷下切缸供热与抽汽供热比较
Tab. 3. Comparison between cylinder cutting heating and steam extraction heating under 160 MW load
切缸供热量/
(GJ·h−1)抽汽供热量/
(GJ·h−1)供热量差值/
(GJ·h−1)经济性差值/
(元·h−1)1 261 358 903 4 866 表 4 切缸供热与高背压供热比较
Tab. 4. Comparison between cylinder cutting heating and high back pressure heating
切缸供热量/
(GJ·h−1)高背压供热量/
(GJ·h−1)供热量差值/
(GJ·h−1)经济性差值/
(元·h−1)1 261 1 088 173 930 -
[1] 付怀仁, 宋春节, 丛春华. 燃煤电厂供热改造技术浅析 [J]. 区域供热, 2019(2): 74-78. DOI: 10.16641/j.cnki.cn11-3241/tk.2019.02.015. FU H R, SONG C J, CONG C H. Analysis of heat supply reform technology in coal-fired power plant [J]. District Heating, 2019(2): 74-78. DOI: 10.16641/j.cnki.cn11-3241/tk.2019.02.015. [2] 郭东东. 热电联产供热系统节能分析及改进 [J]. 中国资源综合利用, 2018, 36(2): 90-92. DOI: 10.3969/j.issn.1008-9500.2018.02.033. GUO D D. Energy saving analysis and improvement of cogeneration heating system [J]. China Resources Comprehensive Utilization, 2018, 36(2): 90-92. DOI: 10.3969/j.issn.1008-9500.2018.02.033. [3] 吴斌, 邵志跃, 胡欣, 等. 215 MW机组工业抽汽供热改造 [J]. 热力发电, 2015, 44(5): 87-90. DOI: 10.3969/j.issn.1002-3364.2015.05.087. WU B, SHAO Z Y, HU X, et al. Heat supply transformation for four 215 MW units using steam extraction [J]. Thermal Power Generation, 2015, 44(5): 87-90. DOI: 10.3969/j.issn.1002-3364.2015.05.087. [4] 张军辉, 杜献伟, 张文涛. 300 MW纯凝机组供热改造经济性分析 [J]. 发电技术, 2019, 40(1): 71-73. DOI: 10.12096/j.2096-4528.pgt.18068. ZHANG J H, DU X W, ZHANG W T. Economic analysis of heating reform of 300 MW condensing power plant [J]. Power Generation Technology, 2019, 40(1): 71-73. DOI: 10.12096/j.2096-4528.pgt.18068. [5] 刘中祥. 大容量纯凝式机组改供热后的调峰能力计算 [J]. 江苏电机工程, 2015, 34(2): 75-77+81. DOI: 10.19464/j.cnki.cn32-1541/tm.2015.02.021. LIU Z X. Peaking regulation capacity calculation of the cogeneration unit renovated from pure condensing unit [J]. Jiangsu Electrical Engineering, 2015, 34(2): 75-77+81. DOI: 10.19464/j.cnki.cn32-1541/tm.2015.02.021. [6] 宣伟东. 300 MW机组高低旁路联合供热改造实践分析 [J]. 节能技术, 2020, 38(6): 561-564. DOI: 10.3969/j.issn.1002-6339.2020.06.018. XUAN W D. Practical analysis of high and low bypass combined heating system for 300 MW units [J]. Energy Conservation Technology, 2020, 38(6): 561-564. DOI: 10.3969/j.issn.1002-6339.2020.06.018. [7] 王斌, 李志炜, 谭锐, 等. 基于背压汽轮机供热改造技术的节能效果试验研究 [J]. 电站系统工程, 2021, 37(5): 54-56+60. DOI: 10.19666/j.rlfd.201807137. WANG B, LI Z W, TAN R, et al. Experimental study on energy saving based on heating retrofit technology of back-pressure turbine [J]. Power System Engineering, 2021, 37(5): 54-56+60. DOI: 10.19666/j.rlfd.201807137. [8] 戴昕, 范丽凯. 300 MW空冷机组高背压供热改造及应用 [J]. 自动化应用, 2020(11): 46-48. DOI: 10.19769/j.zdhy.2020.11.017. DAI X, FAN L K. Transformation and application of high back pressure heating of 300 MW air cooling unit [J]. Automation Application, 2020(11): 46-48. DOI: 10.19769/j.zdhy.2020.11.017. [9] 张钦鹏, 王学栋, 李峰. 330 MW汽轮机组切除低压缸运行的供热能力和调峰能力分析 [J]. 山东电力技术, 2020, 47(12): 72-76. DOI: 10.3969/j.issn.1007-9904.2020.12.017. ZHANG Q P, WANG X D, LI F. Analysis of heating capacity and peak-regulating capacity of 330 MW steam turbine unit with low-pressure cylinder off operation [J]. Shandong Electric Power Technology, 2020, 47(12): 72-76. DOI: 10.3969/j.issn.1007-9904.2020.12.017. [10] 高新勇, 孙士恩, 何晓红, 等. 基于热力学第二定律的热电厂低真空供热能耗分析 [J]. 热能动力工程, 2016, 31(6): 59-65. DOI: 10.16146/j.cnki.rndlgc.2016.06.010. GAO X Y, SUN S E, HE X H, et al. Energy consumption analysis of low vacuum heating in thermal power plant based on the second law of thermo-dynamics [J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(6): 59-65. DOI: 10.16146/j.cnki.rndlgc.2016.06.010. [11] 王汝武, 曹猛. 提高热电厂效率的几项措施 [J]. 节能, 2007, 26(3): 41-44. DOI: 10.3969/j.issn.1004-7948.2007.03.015. WANG R W, CAO M. The measures of improving the efficiency of power plants [J]. Energy Conservation, 2007, 26(3): 41-44. DOI: 10.3969/j.issn.1004-7948.2007.03.015. [12] 李勇, 杨磊磊. 汽轮机变工况各级热力参数计算方法研究 [J]. 汽轮机技术, 2015, 57(5): 321-325+340. DOI: 10.3969/j.issn.1001-5884.2015.05.001. LI Y, YANG L L. Research on calculation method of varying condition thermal parameters for steam turbine [J]. Turbine Technology, 2015, 57(5): 321-325+340. DOI: 10.3969/j.issn.1001-5884.2015.05.001. [13] 杨志平, 杨勇平. 1 000 MW燃煤机组能耗及其分布 [J]. 华北电力大学学报(自然科学版), 2012, 39(2): 76-80. DOI: 10.3969/j.issn.1007-2691.2012.01.015. YANG Z P, YANG Y P. Energy consumption and distribution of 1 000 MW coal-fired power generating unit [J]. Journal of North China Electric Power University (Natural Science Edition), 2012, 39(2): 76-80. DOI: 10.3969/j.issn.1007-2691.2012.01.015. [14] 王金星, 郝剑, 刘畅, 等. 抽凝机组热电联产系统中扩大热电负荷比的灵活性研究 [J]. 热力发电, 2020, 49(12): 41-50. DOI: 10.19666/j.rlfd.202002095. WANG J X, HAO J, LIU C, et al. Enlargement of heat-electricity ratio for flexibility operation in a large-scale extraction condensing turbine system [J]. Thermal Power Generation, 2020, 49(12): 41-50. DOI: 10.19666/j.rlfd.202002095. [15] 王金星, 张少强, 张瀚文, 等. 燃煤电厂调峰调频储能技术的研究进展 [J]. 华电技术, 2020, 42(4): 64-71. DOI: 10.3969/j.issn.1674-1951.2020.04.010. WANG J X, ZHANG S Q, ZHANG H W, et al. Progress on the peak load regulation, frequency regulation and energy storage technologies for coal-fired power plants [J]. Huadian Technology, 2020, 42(4): 64-71. DOI: 10.3969/j.issn.1674-1951.2020.04.010. [16] 陈海平. 热力发电厂 [M]. 北京: 中国电力出版社, 2018. CHEN H P. Thermal power plant [M]. Beijing: China Electric Power Press, 2018.