高级检索

液化空气储能基本循环的热力学分析

孙潇, 朱光涛, 裴爱国

孙潇, 朱光涛, 裴爱国. 液化空气储能基本循环的热力学分析[J]. 南方能源建设, 2022, 9(4): 53-62. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.007
引用本文: 孙潇, 朱光涛, 裴爱国. 液化空气储能基本循环的热力学分析[J]. 南方能源建设, 2022, 9(4): 53-62. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.007
SUN Xiao, ZHU Guangtao, PEI Aiguo. Thermodynamic Analysis of Basic Cycles of Liquid Air Energy Storage System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(4): 53-62. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.007
Citation: SUN Xiao, ZHU Guangtao, PEI Aiguo. Thermodynamic Analysis of Basic Cycles of Liquid Air Energy Storage System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(4): 53-62. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.007
孙潇, 朱光涛, 裴爱国. 液化空气储能基本循环的热力学分析[J]. 南方能源建设, 2022, 9(4): 53-62. CSTR: 32391.14.j.gedi.issn2095-8676.2022.04.007
引用本文: 孙潇, 朱光涛, 裴爱国. 液化空气储能基本循环的热力学分析[J]. 南方能源建设, 2022, 9(4): 53-62. CSTR: 32391.14.j.gedi.issn2095-8676.2022.04.007
SUN Xiao, ZHU Guangtao, PEI Aiguo. Thermodynamic Analysis of Basic Cycles of Liquid Air Energy Storage System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(4): 53-62. CSTR: 32391.14.j.gedi.issn2095-8676.2022.04.007
Citation: SUN Xiao, ZHU Guangtao, PEI Aiguo. Thermodynamic Analysis of Basic Cycles of Liquid Air Energy Storage System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(4): 53-62. CSTR: 32391.14.j.gedi.issn2095-8676.2022.04.007

液化空气储能基本循环的热力学分析

基金项目: 中国能建广东院科技项目“新型电力系统下氢能与储能关键技术研究”(EV10071W)
详细信息
    作者简介:

    孙潇,1993-,女,湖南长沙人,博士后,浙江大学制冷及低温工程博士,主要从事机械式储能和氢液化方向的研究(e-mail)sunxiao@gedi.com.cn

    通讯作者:

    孙潇,1993-,女,湖南长沙人,博士后,浙江大学制冷及低温工程博士,主要从事机械式储能和氢液化方向的研究(e-mail)sunxiao@gedi.com.cn

  • 中图分类号: TK02;TK123

Thermodynamic Analysis of Basic Cycles of Liquid Air Energy Storage SystemEn

  • 摘要:
        目的   以新能源为主体的新型电力系统对储能的需求不断增加,液化空气储能是一种新兴的长时间、大容量物理储能方法,具有广泛的应用前景。文章旨在探究液化空气储能的热力学原理以及关键参数对储能效率的影响规律。
        方法   建立了液化空气储能三种基本循环:分离式循环、冷能回收循环、冷能热能回收循环的热力学模型,分析了冷能回收、热能回收、高压压力、释能压力等关键参数对液化率和循环效率的影响。
        结果   结果表明液化率与循环效率正相关。分离式循环的液化率与循环效率极低,冷能回收循环由于利用了液空复温过程中的冷量可以显著提升液化率与循环效率,冷能热能回收循环在此基础上利用了压缩热而进一步提升液化率与循环效率。液化率与循环效率随冷能回收量的增加而升高、随高压压力的升高而升高、随释能压力的升高而下降。
        结论   冷能热能回收循环是液化空气储能的优选方案。高效蓄冷将对提升循环效率发挥重要作用。在液空复温过程中利用工业余热、废热有助于进一步提升循环效率。
    Abstract:
        Introduction   The demand for energy storage of new power systems (dominated by renewable energy) is increasing. Liquid air energy storage is a new method of physical energy storage with large capacity for long time storage, which has a broad application prospect. the purpose is to explore the thermodynamic principle of liquid air energy storage system and the influence of key parameters on energy storage efficiency.
        Method   The thermodynamic models of three basic cycles of liquid air energy storage system: separated cycle, cooling capacity recovery cycle and cooling capacity and heat recovery cycle were established. The influence of key parameters such as cold energy recovery, heat recovery, high pressure and discharge pressure on liquid yield and cycle efficiency was analyzed.
        Result   The results show that there is a positive correlation between liquid yield and cycle efficiency. The liquid yield and cycle efficiency of the separated cycle are extremely low. The cooling capacity recovery cycle, using the cooling capacity during temperature rise, significantly improves the liquid yield and cycle efficiency. The cooling capacity and heat recovery cycle further improve the liquid yield and recycling efficiency for the use of heat of compression. The liquid yield and cycle efficiency increase with the increase of cooling capacity recovery, increase with the increase of high pressure, and decrease with the increase of discharge pressure.
        Conclusion   Cooling capacity and heat recovery cycle is the optimal scheme of liquid air energy storage. Efficient cooling capacity storage plays an important role in improving cycle efficiency. The utilization of industrial waste heat in the process of liquid-air reheating is helpful to further improve cycle efficiency.
  • 图  1   分离式循环流程示意图

    Figure  1.   Schematic diagram of the separate cycle

    图  2   分离式循环T-s图(数据见表1

    Figure  2.   T-s diagram of the separate cycle (data shown in Tab. 1)

    图  3   冷能回收循环流程示意图

    Figure  3.   Schematic diagram of the cooling capacity recovery cycle

    图  4   冷能回收循环T-s图(数据见表2

    Figure  4.   T-s diagram of the cooling capacity recovery cycle (data shown in Tab. 2)

    图  5   冷能热能回收循环流程示意图

    Figure  5.   Schematic diagram of cooling capacity and heat recovery cycle

    图  6   冷能热能回收循环T-s图(数据见表3

    Figure  6.   T-s diagram of the cooling capacity and heat recovery cycle (data shown in Tab. 3)

    图  7   热力学状态参数计算流程图

    Figure  7.   Flow chart of thermodynamic state parameter calculation

    图  8   冷能回收终点温度的影响:(a)液化率和循环效率;(b)功和热

    Figure  8.   Effect of terminal temperature of cold energy recovery on: (a) liquid yield and cycle efficiency; (b) work and heat

    图  9   高压压力的影响:(a)液化率和循环效率;(b)功和热

    Figure  9.   Effect of high pressure on: (a) liquid yield and cycle efficiency; (b) work and heat

    图  10   高压压力对压缩终点比焓(h2)的影响

    Figure  10.   Effect of high pressure on specific enthalpy at compression end

    图  11   释能压力的影响:(a)液化率和循环效率;(b)功和热

    Figure  11.   Effect of discharge pressure on: (a) liquid yield and cycle efficiency; (b) work and heat

    表  1   分离式循环的热力学参数

    Table  1   Thermodynamic parameters of the separate cycle

    状态点T/Kp/MPah/[kJ·(kg)−1]s/[kJ·(kg)−1·K−1)]
    13000.1426.303.891
    23008409.852.583
    3157.498196.821.569
    481.490.1196.822.467
    581.610.1204.722.563
    678.790.1−0.22−0.00282
    779.9755.37−0.00256
    8882.2251041.803.891
    93000.1426.303.891
    wt/[kJ·(kg)−1]wp/[kJ·(kg)−1]wc/[kJ·(kg)−1]qin/[kJ·(kg)−1]yη
    615.55.60375.951036.430.0630.078
    下载: 导出CSV

    表  3   冷能热能回收循环的热力学参数

    Table  3   Thermodynamic parameters of the cooling capacity and heat recovery cycle

    状态点T/Kp/MPah/[kJ·(kg)−1]s/[kJ·(kg)−1·K−1)]
    13000.1426.303.891
    23008409.852.583
    3117.24880.710.730
    479.830.180.711.034
    581.610.1204.722.563
    678.790.1−0.22−0.00282
    779.9755.37−0.00256
    8'2905404.862.699
    8''2975412.492.725
    8882.2251041.803.891
    93000.1426.303.891
    wt/[kJ·(kg)−1]wp/[kJ·(kg)−1]wc/[kJ·(kg)−1]qin/[kJ·(kg)−1]yη
    615.55.60375.94629.290.6090.489
    下载: 导出CSV

    表  2   冷能回收循环的热力学参数

    Table  2   Thermodynamic parameters of the cooling capacity recovery cycle

    状态点T/Kp/MPah/[kJ·(kg)−1]s/[kJ·(kg)−1·K−1)]
    13000.1426.303.891
    23008409.852.583
    3117.24880.710.730
    479.830.180.711.034
    581.610.1204.722.563
    678.790.1−0.22−0.00282
    779.9755.37−0.00256
    8'2905404.862.699
    8882.2251041.803.891
    93000.1426.303.891
    wt/[kJ·(kg)−1]wp/[kJ·(kg)−1])wc/[kJ·(kg)−1]qin/[kJ·(kg)−1]yη
    615.55.60375.94636.910.6090.486
    下载: 导出CSV
  • [1] 郭祚刚, 雷金勇, 邓广义. 匹配新能源电能并网的压缩空气储能站性能研究 [J]. 南方能源建设, 2018, 5(3): 26-32. DOI: 10.16516/j.gedi.issn2095-8676.2018.03.004.

    GUO Z G, LEI J Y, DENG G Y. Performance analysis of compressed air energy storage system for grid-connection of renewable power [J]. Southern Energy Construction, 2018, 5(3): 26-32. DOI: 10.16516/j.gedi.issn2095-8676.2018.03.004.

    [2] 张东辉, 徐文辉, 门锟, 等. 储能技术应用场景和发展关键问题 [J]. 南方能源建设, 2019, 6(3): 1-5. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.001.

    ZHANG D H, XU W H, MEN K, et al. Application scenarios of energy storage and its key issues in development [J]. Southern Energy Construction, 2019, 6(3): 1-5. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.001.

    [3]

    GLAMHEDEN R, CURTIS P. Excavation of a cavern for high-pressure storage of natural gas [J]. Tunnelling and Underground Space Technology, 2006, 21(1): 56-67. DOI: 10.1016/j.tust.2005.06.002.

    [4] 文贤馗, 张世海, 王锁斌. 压缩空气储能技术及示范工程综述 [J]. 应用能源技术, 2018(3): 43-48. DOI: 10.3969/j.issn.1009-3230.2018.03.012.

    WEN X K, ZHANG S H, WANG S B. Summary of compressed air energy storage technology and demonstration projects [J]. Applied Energy Technology, 2018(3): 43-48. DOI: 10.3969/j.issn.1009-3230.2018.03.012.

    [5]

    PIMM A J, GARVEY S D, DE JONG M. Design and testing of energy bags for underwater compressed air energy storage [J]. Energy, 2014, 66: 496-508. DOI: 10.1016/j.energy.2013.12.010.

    [6] 郭丁彰, 尹钊, 周学志, 等. 压缩空气储能系统储气装置研究现状与发展趋势 [J]. 储能科学与技术, 2021, 10(5): 1486-1493. DOI: 10.19799/j.cnki.2095-4239.2021.0356.

    GUO D Z, YIN Z, ZHOU X Z, et al. Status and prospect of gas storage device in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1486-1493. DOI: 10.19799/j.cnki.2095-4239.2021.0356.

    [7] 刘林林. 深冷液化压缩空气储能技术解读 [J]. 华北电业, 2016(4): 47-49.

    LIU L L. Cryogenic liquefied compressed air energy storage technology interpretation [J]. North China Power, 2016(4): 47-49.

    [8]

    BORRI E, TAFONE A, ROMAGNOLI A, et al. A review on liquid air energy storage: history, state of the art and recent developments [J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110572. DOI: 10.1016/j.rser.2020.110572.

    [9]

    SMITH E M. Storage of electrical energy using supercritical liquid air [J]. Proceedings of the Institution of Mechanical Engineers, 1977, 191(1): 289-298. DOI: 10.1243/PIME_PROC_1977_191_035_02.

    [10]

    KENJI K, KEIICHI H, TAKAHISA A. Development of generator of liquid air storage energy system [J]. Technical Review - Mitsubishi Heavy Industries, 1998, 35(3): 60-63.

    [11]

    CHINO K, ARAKI H. Evaluation of energy storage method using liquid air [J]. Heat Transfer - Asian Research, 2000, 29(5): 347-357. DOI: 10.1002/1523-1496(200007)29:5<347::AID-HTJ1>3.0.CO;2-A.

    [12]

    MORGAN R E. Liquid air energy storage – from theory to demonstration [J]. International Journal of Environmental Studies, 2016, 73(3): 469-480. DOI: 10.1080/00207233.2016.1189741.

    [13]

    PENG X D, SHE X H, LI C, et al. Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction [J]. Applied Energy, 2019, 250: 1190-1201. DOI: 10.1016/j.apenergy.2019.05.040.

    [14]

    HIGHVIEWPOWER. Developed and developing projects[EB/OL]. (2021-11-18) [2022-03-07]. https://highviewpower.com/plants/.

    [15]

    GUIZZI G L, MANNO M, TOLOMEI L M, et al. Thermodynamic analysis of a liquid air energy storage system [J]. Energy, 2015, 93: 1639-1647. DOI: 10.1016/j.energy.2015.10.030.

    [16]

    SCIACOVELLI A, SMITH D, NAVARRO M E, et al. Performance analysis and detailed experimental results of the first liquid air energy storage plant in the world [J]. Journal of Energy Resources Technology, 2018, 140(2): 020908. DOI: 10.1115/1.4038378.

    [17]

    LIN X P, WANG L, XIE N N, et al. Thermodynamic analysis of the cascaded packed bed cryogenic storage based supercritical air energy storage system [J]. Energy Procedia, 2019, 158: 5079-5085. DOI: 10.1016/j.egypro.2019.01.639.

    [18]

    HAMDY S, MOROSUK T, TSATSARONIS G. Cryogenics-based energy storage: evaluation of cold exergy recovery cycles [J]. Energy, 2017, 138: 1069-1080. DOI: 10.1016/j.energy.2017.07.118.

    [19] 苏苗印, 张益, 李晶晶. 盘管式蓄冷器在液化空气储能系统的应用研究 [J]. 真空与低温, 2019, 25(3): 209-214. DOI: 10.3969/j.issn.1006-7086.2019.03.010.

    SU M Y, ZHANG Y, LI J J. Application of coil regenerator in liquid air energy storage system [J]. Vacuum and Cryogenics, 2019, 25(3): 209-214. DOI: 10.3969/j.issn.1006-7086.2019.03.010.

    [20] 贾春蓉, 彭婧, 王洲, 等. 面向液化空气储能系统蓄冷器的新型材料制备及蓄冷特性研究 [J]. 电力电容器与无功补偿, 2021, 42(1): 186-190. DOI: 10.14044/j.1674-1757.pcrpc.2021.01.029.

    JIA C R, PENG J, WANG Z, et al. Preparation of new materials and its cold storage performance study for regenerator in liquefied air energy storage [J]. Power Capacitor & Reactive Power Compensation, 2021, 42(1): 186-190. DOI: 10.14044/j.1674-1757.pcrpc.2021.01.029.

    [21] 杨德州, 贾春荣, 迟昆, 等. 深冷液化空气储能系统热力学建模与效率分析 [J]. 电力电容器与无功补偿, 2020, 41(6): 185-190. DOI: 10.14044/j.1674-1757.pcrpc.2020.06.030.

    YANG D Z, JIA C R, CHI K, et al. Thermodynamic modeling and efficiency analysis of liquid air energy storage [J]. Power Capacitor & Reactive Power Compensation, 2020, 41(6): 185-190. DOI: 10.14044/j.1674-1757.pcrpc.2020.06.030.

    [22]

    DUTTA R, SANDILYA P. Experimental investigations on cold recovery efficiency of packed-bed in cryogenic energy storage system [J]. IOP Conference Series:Materials Science and Engineering, 2020, 755: 012103. DOI: 10.1088/1757-899X/755/1/012103.

    [23] 金翼, 王乐, 杨岑玉, 等. 堆积床储冷系统循环性能分析 [J]. 储能科学与技术, 2017, 6(4): 708-718. DOI: 10.12028/j.issn.2095-4239.2017.0083.

    JIN Y, WANG L, YANG C Y, et al. Cycle performance of a packed bed based cold storage device [J]. Energy Storage Science and Technology, 2017, 6(4): 708-718. DOI: 10.12028/j.issn.2095-4239.2017.0083.

    [24] 安保林, 陈嘉祥, 王俊杰, 等. 液态空气储能系统液化率影响因素研究 [J]. 工程热物理学报, 2019, 40(11): 2478-2482.

    AN B L, CHEN J X, WANG J J, et al. Study on the influencing factors on liquid air energy storage system liquefaction rate [J]. Journal of Engineering Thermophysics, 2019, 40(11): 2478-2482.

图(11)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-06
  • 修回日期:  2022-04-13
  • 录用日期:  2022-09-28
  • 网络出版日期:  2022-12-24
  • 刊出日期:  2022-12-22

目录

    PEI Aiguo

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回