-
本章对广东现行价格和市场机制下,新能源配储能、独立(电网侧)储能和用户侧储能进行经济性测算,分析新型储能发展存在的问题,为政策制定提供支撑。
-
根据目前广东省相关政策,电源侧储能主要通过火储联调参与调频辅助服务市场获得收益,新能源配储能尚无成本回收机制,储能成本靠新能源发电项目内部消化,文章分析在保障合理的项目资本金收益率(7%)范围内,各类新能源项目可承受的配置储能规模。
-
年均利用小时数按1000考虑(符合广东实际,下同),测算不同单位千瓦造价情况下,集中式光伏可承受配置的储能规模,结果如表1~表3所示。
表 1 光伏单位投资为4300元/kW时的方案
Table 1. Scheme when photovoltaic unit investment is 4300 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 9.41% 8.63% 7.89% 7.19% 2.5 9.41% 8.49% 7.62% \ 2 2.0 9.41% 7.96% \ \ 2.5 9.41% 7.69% \ \ 注:表中“9.41%”等数据为对应方案下的资本金内部收益率,“\”表示该方案的资本金内部收益率低于7%,表2~表8同。 表 2 光伏单位投资为4500元/kW时的方案
Table 2. Scheme when photovoltaic unit investment is 4500 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 8.25% 7.55% \ \ 2.5 8.25% 7.42% \ \ 2 2.0 8.25% \ \ \ 2.5 8.25% \ \ \ 表 3 光伏单位投资为4700元/kW时的方案
Table 3. Scheme when photovoltaic unit investment is 4700 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 7.23% \ \ \ 2.5 7.23% \ \ \ 2 2.0 7.23% \ \ \ 2.5 7.23% \ \ \ 可见,若造价为4700元/kW,集中式光伏不具备消纳强配储能的能力;若造价为4500元/kW,集中式光伏可承受配置5%、1 h的储能;若造价为4300元/kW,集中式光伏可承受配置15%、1 h或5%、2 h的储能。
-
年均利用小时数按1700考虑,测算不同单位千瓦造价情况下,陆上风电可承受配置的储能规模,结果如表4~表6所示。
表 4 陆上风电单位投资为6000元/kW时的方案
Table 4. Scheme when the unit investment of onshore wind power is 6000 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 8.78% 8.14% 7.52% \ 2.5 8.78% 8.02% 7.29% \ 2 2.0 8.78% 7.57% \ \ 2.5 8.78% 7.34% \ \ 表 5 陆上风电单位投资为7000元/kW时的方案
Table 5. Scheme when the unit investment of onshore wind power is 7000 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 6.46% \ \ \ 2.5 6.46% \ \ \ 2 2.0 6.46% \ \ \ 2.5 6.46% \ \ \ 表 6 陆上风电单位投资为7500元/kW时的方案
Table 6. Scheme when the unit investment of onshore wind power is 7500 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 4.51% \ \ \ 2.5 4.51% \ \ \ 2 2.0 4.51% \ \ \ 2.5 4.51% \ \ \ 可见,若造价达到7000元/kW以上,陆上风电不具备消纳强配储能的能力;若造价为6000元/kW,陆上风电可承受配置10%、1 h或者5%、2 h的储能。
-
年均利用小时数按3500考虑,测算不同单位千瓦造价情况下,海上风电可承受配置的储能规模,结果如表7和表8所示。
表 7 海上风电单位投资为14000元/kW时的方案
Table 7. Scheme when the unit investment of offshore wind power is 14000 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 7.57% 7.35% 7.14% \ 2.5 7.57% 7.31% 7.06% \ 2 2.0 7.57% 7.16% \ \ 2.5 7.57% 7.08% \ \ 表 8 海上风电单位投资为15000/kW时的方案
Table 8. Scheme when the unit investment of offshore wind power is 15000 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 5.99% \ \ \ 2.5 5.99% \ \ \ 2 2.0 5.99% \ \ \ 2.5 5.99% \ \ \ 可见,若造价达到15000元/kW以上,海上风电不具备消纳强配储能的能力;若造价为14000元/kW,海上风电可承受配置10%、1 h或者5%、2 h的储能。
-
《输配电定价成本监审办法》[13]和《省级电网输配电价定价办法》[14]均明确规定电化学储能不能计入输配电定价成本。根据目前广东省相关政策,独立(电网侧)储能可通过参与电能量现货市场、调频辅助服务市场、两个细则规定的深度调峰服务获取收益。电能量现货市场方面,根据省内近几个月发电侧节点加权综合价,若考虑储能在低谷和午间充电,早高峰和下午放电,充放电价差仅约0.2元/kWh。调频辅助服务市场方面,中标容量对独立储能的收益将产生较大影响,但目前规则尚未明确独立储能允许申报的二次调频容量,收益测算不确定性大;深度调峰服务方面,一方面短期内广东调峰形势尚可,启用深度调峰可能性不大,储能深度调峰调用频率较低,另一方面目前两个细则尚未明确储能深度调峰认定标准,收益测算不确定性大。若仅考虑0.2元/kWh的现货电能量价差,广东独立(电网侧)储能尚不具备经济性。
另外,独立(电网侧)储能目前还存在接入系统工程建设机制不明确的问题。
-
根据《关于进一步完善我省峰谷分时电价政策有关问题的通知》[15]和《广东省市场化需求响应交易实施方案(试行)》[16],用户侧储能可通过峰谷电价套利和参与日前邀约需求响应获取收益。峰谷电价套利方面,全年峰平谷比价为1.7:1:0.38,7月、8月和9月三个整月,以及其他月份中日最高气温达到35 ℃及以上的高温天,还有在峰段电价基础上上浮25%的尖峰电价,以0.463元/kWh为平段基准上网电价,用户侧峰谷价差可达到0.792元/kWh;日前邀约需求响应方面,以2021年情况来看,需求响应日前邀约大概有87天,出清价格约3.5~4.0元/kWh。
用户侧储能项目的商业模式主要有两种:第一种全年峰谷套利,减少用户的电度电费;第二种在需求响应启动时参与需求响应,其余时间采用峰谷套利模式。第一种模式下,用户侧储能项目收益率与储能单位造价相关性大,当单位造价1800元/kWh以下时,资本金内部收益率为7%以上,投资回收期为12年,可满足收益率要求。第二种模式下,用户侧储能项目收益率还与需求侧响应日前邀约价格和次数有关,当储能单位造价在2000元/kWh时,若需求侧响应日前邀约出清价格约价格为3.5元/kWh,只要全年有8天以上参与需求侧响应日前邀约,资本金内部收益率即可达到7%以上,投资回收期为12年,可满足收益率要求。
受原材料涨价影响,近期储能系统单位造价达到2000元/kWh以上,需求侧响应市场受电力供需形势和政策影响,存在较大不确定性,因此用户侧储能由于投资回收期长,经济性也存在较大不确定性。用户侧储能项目经济性测算参数如表9所示。
表 9 用户侧储能项目经济性测算参数
Table 9. Economical calculation parameters of user-side energy storage projects
项目 数值 综合效率/% 87 放电深度/% 94 资本金投资比例/% 20 贷款利率/% 4.6 贷款年限/a 7 运维及其他/% 1 折旧年限/a 7 残值/% 5 全生命周期/a 16 -
在广东现行价格和市场机制下,新能源配储能暂无明确的成本回收机制,储能成本靠新能源发电项目内部消化,新能源项目可承受的配置储能规模,与其单位千瓦造价相关性较高。测算结果表明,集中式光伏、陆上风电、海上风电造价分别为4500元/kW、6000元/kW和14000元/kW以下时,才具备配置储能的空间。结合新能源项目市场情况,光伏和陆上风电具备少量强配储能的成本消化空间,海上风电不具备强配储能的成本消化空间。独立(电网侧)储能方面,当前的电能量现货价差、调频辅助服务市场细则和深度调峰补偿机制均无法支撑独立储能获得合理收益。用户侧储能方面,虽然有明确的成本回收机制,但长期来看,受储能系统价格、电力供需形势、政策变动影响,存在一定不确定性。
Suggestions on Supporting Policies for New Energy Storage in Guangdong
-
摘要:
目的 新型储能是提升系统调节能力的重要手段之一,是构建新型电力系统的重要组成部分。明确新型储能的市场定位,研究完善新型储能的成本分摊和价格机制,有助于引导其健康、有序、高效发展。 方法 梳理国内外新型储能相关政策及运行情况;分析新型储能在电力系统中的功能和作用;结合广东电力系统实际,研究2030年前新型储能建设规模需求;基于广东目前价格机制,测算发电、电网(独立)、用户侧储能经济性,分析广东新型储能政策现状及存在问题;综合提出广东新型储能配套政策和机制建议。 结果 从调峰和调频角度分析,2030年前广东对新型储能尚不存在迫切需求;新能源配储能尚无明确的成本回收机制,光伏和陆上风电具备少量强配储能的成本消化空间,海上风电不具备强配储能的成本消化空间;电网侧(独立)储能商业模式尚不清晰,可通过辅助服务和现货电能量价差获取收益,但操作细则有待进一步明确,尚不具备经济性;用户侧储能商业模式较清晰,按现行峰谷电价和需求侧响应政策,具备一定经济性,但投资回收期长,面临政策变化风险。 结论 将新型储能区分为市场化和非市场化两类,前者由除电网外各类市场主体投资,在合理的价格和运行机制下,通过市场化渠道获取收益,由市场调节形成合理的新型储能规模和布局;后者由电网公司投资,通过输配电价回收成本。 Abstract:Introduction New energy storage is one of the important means to improve the system's adjustment ability, and it is an important part of building a new power system. It is necessary to clarify the market positioning of new energy storage, and to study and improve the cost allocation and price mechanism of new energy storage, which will help guide its health, orderly and efficient development. Method The relevant policies and operation of new energy storage at home and abroad were sorted out, the function and role of new energy storage in the power system was analyzed. Combined with the actual situation of Guangdong power system, the scale demand of new energy storage construction before 2030 was studied. Based on the current price mechanism in Guangdong, the energy storage economy of power generation, power grid (independent), user-side was estimated, the current situation and existing problems of Guangdong's new energy storage policies were analyzed. Guangdong's new energy storage supporting policies and mechanism suggestions were comprehensively put forward. Result From the perspective of peak shaving and frequency regulation, there is no urgent need for new energy storage in Guangdong before 2030, there is no clear cost recovery mechanism for new energy distribution and energy storage, and photovoltaics and onshore wind power have a small amount of cost digestion space for strong distribution of energy storage, offshore wind power does not have the cost digestion space for strong distribution of energy storage. The business model of grid-side (independent) energy storage is not yet clear, and benefits can be obtained through ancillary services and spot electricity price difference, but the operating rules need to be further clarified, and it is not yet economical. The user-side energy storage business model is relatively clear. According to the current peak-valley electricity price policy, it has certain economic benefits, but the investment recovery period is long and it faces the risk of policy changes. Conclusion The new energy storage is divided into two types: market-oriented and non-market-oriented. The former is invested by various market entities other than the power grid. Under reasonable prices and operating mechanisms, profits are obtained through market-oriented channels, and a reasonable new energy storage system is formed by market regulation. energy scale and layout; the latter is invested by the grid company, and the cost is recovered through the transmission and distribution price. -
Key words:
- price mechanism /
- new energy storage /
- new energy /
- marketization /
- Guangdong
-
表 1 光伏单位投资为4300元/kW时的方案
Tab. 1. Scheme when photovoltaic unit investment is 4300 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 9.41% 8.63% 7.89% 7.19% 2.5 9.41% 8.49% 7.62% \ 2 2.0 9.41% 7.96% \ \ 2.5 9.41% 7.69% \ \ 注:表中“9.41%”等数据为对应方案下的资本金内部收益率,“\”表示该方案的资本金内部收益率低于7%,表2~表8同。 表 2 光伏单位投资为4500元/kW时的方案
Tab. 2. Scheme when photovoltaic unit investment is 4500 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 8.25% 7.55% \ \ 2.5 8.25% 7.42% \ \ 2 2.0 8.25% \ \ \ 2.5 8.25% \ \ \ 表 3 光伏单位投资为4700元/kW时的方案
Tab. 3. Scheme when photovoltaic unit investment is 4700 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 7.23% \ \ \ 2.5 7.23% \ \ \ 2 2.0 7.23% \ \ \ 2.5 7.23% \ \ \ 表 4 陆上风电单位投资为6000元/kW时的方案
Tab. 4. Scheme when the unit investment of onshore wind power is 6000 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 8.78% 8.14% 7.52% \ 2.5 8.78% 8.02% 7.29% \ 2 2.0 8.78% 7.57% \ \ 2.5 8.78% 7.34% \ \ 表 5 陆上风电单位投资为7000元/kW时的方案
Tab. 5. Scheme when the unit investment of onshore wind power is 7000 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 6.46% \ \ \ 2.5 6.46% \ \ \ 2 2.0 6.46% \ \ \ 2.5 6.46% \ \ \ 表 6 陆上风电单位投资为7500元/kW时的方案
Tab. 6. Scheme when the unit investment of onshore wind power is 7500 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 4.51% \ \ \ 2.5 4.51% \ \ \ 2 2.0 4.51% \ \ \ 2.5 4.51% \ \ \ 表 7 海上风电单位投资为14000元/kW时的方案
Tab. 7. Scheme when the unit investment of offshore wind power is 14000 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 7.57% 7.35% 7.14% \ 2.5 7.57% 7.31% 7.06% \ 2 2.0 7.57% 7.16% \ \ 2.5 7.57% 7.08% \ \ 表 8 海上风电单位投资为15000/kW时的方案
Tab. 8. Scheme when the unit investment of offshore wind power is 15000 yuan/kW
放电小时/h 单位成本/[元·(Wh)−1] 储能比例 0% 5% 10% 15% 1 2.0 5.99% \ \ \ 2.5 5.99% \ \ \ 2 2.0 5.99% \ \ \ 2.5 5.99% \ \ \ 表 9 用户侧储能项目经济性测算参数
Tab. 9. Economical calculation parameters of user-side energy storage projects
项目 数值 综合效率/% 87 放电深度/% 94 资本金投资比例/% 20 贷款利率/% 4.6 贷款年限/a 7 运维及其他/% 1 折旧年限/a 7 残值/% 5 全生命周期/a 16 -
[1] 张东辉, 徐文辉, 门锟, 等. 储能技术应用场景和发展关键问题 [J]. 南方能源建设, 2019, 6(3): 1-5. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.001. ZHANG D H, XU W H, MEN K, et al. Application scenarios of energy storage and its key issues in development [J]. Southern Energy Construction, 2019, 6(3): 1-5. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.001. [2] 夏晨阳, 杨子健, 周娟, 等. 基于新型电力系统的储能技术研究 [J]. 内蒙古电力技术, 2022, 40(4): 3-12. DOI: 10.19929/j.cnki.nmgdljs.2022.0058. XIA C Y, YANG Z J, ZHOU J, et al. Research of energy storage technology based on new power system [J]. Inner Mongolia Electric Power, 2022, 40(4): 3-12. DOI: 10.19929/j.cnki.nmgdljs.2022.0058. [3] 闫晓宇, 王小春, 寇建玉. 基于太阳能热发电的内蒙古电网多能互补配比研究 [J]. 内蒙古电力技术, 2019, 37(4): 21-25. DOI: 10.3969/j.issn.1008-6218.2019.04.012. AN X Y, WANG X C, KOU J Y. Research on multi-energy complementary ratio of inner mongolia grid based on solar thermal powe [J]. Inner Mongolia Electric Power, 2019, 37(4): 21-25. DOI: 10.3969/j.issn.1008-6218.2019.04.012. [4] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战 [J]. 电力系统自动化, 2021, 45(9): 171-179. DOI: 10.7500/AEPS20200922001. ZHUO Z Y, ZHANG N, XIE X R. Key technologies and developing challenges of power system with high proportion of renewable energy [J]. Automation of Electric Power Systems, 2021, 45(9): 171-179. DOI: 10.7500/AEPS20200922001. [5] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望 [J]. 中国电机工程学报, 2022, 42(8): 2806-2819. DOI: 10.13334/j.0258-8013.pcsee.220467. ZHANG Z G, KANG C Q. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future [J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819. DOI: 10.13334/j.0258-8013.pcsee.220467. [6] 饶佳, 易斌. 南方区域电力营销环境下的储能市场研究 [J]. 南方能源建设, 2021, 8(3): 78-83. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.011. RAO J, YI B. Research on energy storage market under the power marketing environment in southern China [J]. Southern Energy Construction, 2021, 8(3): 78-83. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.011. [7] 任大伟, 侯金鸣, 肖晋宇, 等. 能源电力清洁化转型中的储能关键技术探讨 [J]. 高电压技术, 2021, 47(8): 2751-2759. DOI: 10.13336/j.1003-6520.hve.20201056. REN D W, HOU J M, XIAO J Y, et al. Exploration of key technologies for energy storage in the cleansing transformation of energy and power [J]. High Voltage Engineering, 2021, 47(8): 2751-2759. DOI: 10.13336/j.1003-6520.hve.20201056. [8] 郭宬昊, 谢子硕, 王金星, 等. 新能源系统中双储能耦合燃煤机组的应用策略研究 [J]. 南方能源建设, 2022, 9(3): 62-71. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.007. GUO C H, XIE Z S, WANG J X, et al. Research on operation strategy of the application of dual energy storage coupled with coal-fired units in new energy power system [J]. Southern Energy Construction, 2022, 9(3): 62-71. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.007. [9] 邵建林, 郑明辉, 郭宬昊, 等. 双碳目标下燃煤热电联产机组储能技术应用分析 [J]. 南方能源建设, 2022, 9(3): 102-110. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.012. SHAO J L, ZHENG M H, GUO C H, et al. Application analysis of energy storage technology for coal-fired combined heat and power generation under carbon peak and neutrality goal [J]. Southern Energy Construction, 2022, 9(3): 102-110. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.012. [10] HAMID S, HAMIDREZA Z, DAVID W. Impacts of largescale wind and solar power integration on California's net electrical load [J]. Renewable and Sustainable Energy Reviews, 2016, 58. DOI: 10.1016/j.rser.2015.12.287. [11] 旷恺宁, 莫峻. 北美电力市场风电预测和不平衡结算机制研究及启示 [J]. 南方电网技术, 2020, 14(7): 90-98. DOI: 10.13648/j.cnki.issn1674-0629.2020.07.012. KUANG K N, MO J. Research and enlightenment of wind power forecasting mechanism and imbalance settlement mechanism in north american electricity market [J]. Southern Power System Technology, 2020, 14(7): 90-98. DOI: 10.13648/j.cnki.issn1674-0629.2020.07.012. [12] 赵文猛, 周保荣, 毛田, 等. 欧洲统一电力市场演变和日前市场出清模型 [J]. 南方电网技术, 2020, 14(5): 74-79. DOI: 10.13648/j.cnki.issn1674-0629.2020.05.011. ZHAO W M, ZHOU B R, MAO T, et al. European unified electricity market evolution and its day-ahead market clearing model [J]. Southern Power System Technology, 2020, 14(5): 74-79. DOI: 10.13648/j.cnki.issn1674-0629.2020.05.011. [13] 董士波,李东伟,王秀娜,等. 关于输配电定价成本监审办法实施效果评估−基于对政策后评估方法的分析 [J]. 价格理论与实践, 2019(3): 89-92. DOI: 10.19851/j.cnki.cn11-1010/f.2019.03.020. DONG S B, LI D W, WANG X N, et al. Post-evaluation of the implementation effect of electricity transmission and distribution cost regulation method [J]. Price: Theory & Practice, 2019(3): 89-92. DOI: 10.19851/j.cnki.cn11-1010/f.2019.03.020. [14] 国家发展改革委. 省级电网输配电价定价办法 [EB/OL]. (2020-01-19) [2022-11-08]. https://www.ndrc.gov.cn/. National Development and Reform Commission. Transmission and distribution pricing method of Provincial power grid[EB/OL]. (2020-01-19) [2022-11-08]. https://www.ndrc.gov.cn/. [15] 广东省发展和改革委员会. 关于进一步完善我省峰谷分时电价政策有关问题的通知 [EB/OL]. (2021-08-31)[2022-11-08]. http://drc.gd.gov.cn/ywtz/content/mpost_3500421.html. Guangdong Provincial Development and Reform Commission. Notice on related issues of further improvement of the peak valley base on Time-of-Use price policy in Guangdong province[EB/OL]. (2021-08-31) [2022-11-08]. http://drc.gd.gov.cn/ywtz/content/mpost_3500421.html. [16] 广州电力交易中心. 南方区域绿色电力交易规则(试行)[EB/OL]. (2022-02-25)[2022-11-08]. https://www.gzpec.cn/. Guangzhou Power Exchange Center. Rules on greening trading mechanism in Southern China(Trial implementation) [EB/OL]. (2022-02-25) [2022-11-08]. https://www.gzpec.cn/.