高级检索

500 kV双回路复合横担直线塔设计方案研究

庄志翔, 张珏, 唐峦, 王丙乾

庄志翔,张珏,唐峦等.500 kV双回路复合横担直线塔设计方案研究[J].南方能源建设,2022,09(增刊1):112-118.. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.017
引用本文: 庄志翔,张珏,唐峦等.500 kV双回路复合横担直线塔设计方案研究[J].南方能源建设,2022,09(增刊1):112-118.. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.017
ZHUANG Zhixiang,ZHANG Jue,TANG Luan,et al.Research on Design Scheme of 500 kV Double Circuit Composite Cross Arm Tangent Tower[J].Southern Energy Construction,2022,09(增刊1):112-118.. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.017
Citation: ZHUANG Zhixiang,ZHANG Jue,TANG Luan,et al.Research on Design Scheme of 500 kV Double Circuit Composite Cross Arm Tangent Tower[J].Southern Energy Construction,2022,09(增刊1):112-118.. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.017
庄志翔,张珏,唐峦等.500 kV双回路复合横担直线塔设计方案研究[J].南方能源建设,2022,09(增刊1):112-118.. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S1.017
引用本文: 庄志翔,张珏,唐峦等.500 kV双回路复合横担直线塔设计方案研究[J].南方能源建设,2022,09(增刊1):112-118.. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S1.017
ZHUANG Zhixiang,ZHANG Jue,TANG Luan,et al.Research on Design Scheme of 500 kV Double Circuit Composite Cross Arm Tangent Tower[J].Southern Energy Construction,2022,09(增刊1):112-118.. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S1.017
Citation: ZHUANG Zhixiang,ZHANG Jue,TANG Luan,et al.Research on Design Scheme of 500 kV Double Circuit Composite Cross Arm Tangent Tower[J].Southern Energy Construction,2022,09(增刊1):112-118.. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S1.017

500 kV双回路复合横担直线塔设计方案研究

基金项目: 

中国能源建设股份有限公司科学技术项目复合材料杆塔设计关键技术研究及应用 CEEC2016-KJ10

详细信息
    作者简介:

    庄志翔1990-,男,广东广州人,工程师,建筑与土木工程硕士,主要从事输电线路的设计和研究工作 E-mail: zhuangzhixiang@gedi.com. cn

  • 中图分类号: TM753

Research on Design Scheme of 500 kV Double Circuit Composite Cross Arm Tangent TowerEn

  • 摘要:
      目的  探究不同设计方案复合横担塔与常规塔之间工程量的差异,可在规划设计阶段快速开展方案比选,为不同场景复合横担塔的应用提供参考。
      方法  文章以500 kV杆塔为例,将杆塔划分为多个部件,并将其与复合横担塔设计方案进行比对分析,同时对塔重,基础混凝土量,金具和绝缘子工程量进行测算,研究各复合横担塔与常规塔工程量的差异。
      结果  测算结果表明:对比常规塔,复合横担塔设计方案1经济性较好,走廊压缩性能较好,应急抢修性能较差;复合横担塔设计方案2经济性一般,走廊压缩性能较好,应急抢修性能一般;复合横担塔设计方案3经济性较差,走廊压缩性能较好,应急抢修性能较好。
      结论  文章研究成果可以为今后的复合横担方案选择提供参考。
    Abstract:
      Introduction  Exploring the difference of quantities between composite cross arm tower and conventional tower in different design schemes can quickly carry out scheme comparison and selection in the planning and design stage, and provide reference for the application of composite cross arm tower in different scenarios.
      Method  Taking the 500 kV tower as an example, the tower was divided into several parts, and compared with the design scheme of the composite cross arm tower. At the same time, the tower weight, the amount of foundation concrete, the quantities of fittings and insulators were calculated, and the differences between the quantities of each composite cross arm tower and the conventional tower were studied.
      Result  The calculation results show that compared with the conventional tower, the design scheme 1 of composite cross arm tower has better economy, better corridor compression performance and poor emergency repair performance; Design scheme 2 of composite cross arm tower has general economy, good corridor compression performance and general emergency repair performance; Design scheme 3 of composite cross arm tower has poor economy, good corridor compression performance and good emergency repair performance.
      Conclusion  The research results of this paper can provide reference for the selection of composite cross arm scheme in the future.
  • 叶筠英
    庄志翔,张珏,唐峦等.500 kV双回路复合横担直线塔设计方案研究[J].南方能源建设,2022,09(增刊1):112-118.

    开放科学(资源服务)标识码 ( OSID)

  • 图  1   常规塔

    Figure  1.   Conventional tower

    图  2   三种复合横担塔设计方案

    Figure  2.   Three design schemes of composite cross arm tower

    图  3   杆塔部件划分

    Figure  3.   Tower component diivision

    表  1   复合横担材料参数

    Table  1   Composite cross arm material parameters

    项 目绝缘芯棒绝缘管
    标准值标准值
    抗拉强度≥1100 MPa≥300 MPa
    拉伸模量≥45 GPa≥20 GPa
    弯曲强度≥900 MPa≥250 MPa
    弯曲模量≥36 GPa≥20 GPa
    压缩强度≥350 MPa≥250 MPa
    压缩模量≥45 GPa≥20 GPa
    面内剪切强度≥35 MPa
    泊松比0.3~0.40.3~0.4
    下载: 导出CSV

    表  2   杆塔部件重量及占总塔重比例

    Table  2   Weight of tower components and proportion in total tower weight

    杆塔部件设计方案估算塔重/t塔重占比/%
    地线支架常规塔1.873.0
    复合横担塔-方案12.655.5
    复合横担塔-方案22.654.9
    复合横担塔-方案32.654.3
    导线横担常规塔7.8412.4
    复合横担塔-方案10.000.0
    复合横担塔-方案20.000.0
    复合横担塔-方案30.000.0
    变坡以上塔身常规塔14.6623.2
    复合横担塔-方案112.7026.5
    复合横担塔-方案212.7023.5
    复合横担塔-方案318.9330.4
    变坡以下塔身常规塔29.4846.7
    复合横担塔-方案124.6451.4
    复合横担塔-方案229.4854.5
    复合横担塔-方案330.8649.6
    塔腿常规塔9.2814.7
    复合横担塔-方案17.9316.6
    复合横担塔-方案29.2817.1
    复合横担塔-方案39.7715.7
    总塔重常规塔63.13100.0
    复合横担塔-方案147.92100.0
    复合横担塔-方案254.11100.0
    复合横担塔-方案362.21100.0
    下载: 导出CSV

    表  3   杆塔基础工程量对比

    Table  3   Comparison of tower foundation quantities

    项目基础混凝土量/m³比常规塔
    常规塔63.601.00
    复合横担塔-方案159.520.94
    复合横担塔-方案263.601.00
    复合横担塔-方案366.681.05
    下载: 导出CSV

    表  4   金具绝缘子工程量对比

    Table  4   Comparison of quantities of fittings and insulators

    项目挂线金具/ t玻璃绝缘子/片
    常规塔0.48250
    复合横担塔-方案10.670
    复合横担塔-方案20.670
    复合横担塔-方案30.670
    下载: 导出CSV

    表  5   杆塔方案经济性对比

    Table  5   Economic comparison of tower design schemes

    项目常规塔复合横担塔-方案1复合横担塔-方案2复合横担塔-方案3
    塔重/t63.1347.9254.1162.21
    基础混凝土/m³63.659.5263.666.68
    绝缘子/片250000
    金具/t0.480.670.670.67
    复合横担/套0111
    费用/万元99.4100.8109.5120.2
    下载: 导出CSV
  • [1] 邱雪梅, 黄译丹, 李雍, 等.复合材料杆塔研究现状及发展趋势 [J].电气技术, 2017(9): 1-3+9.DOI: 10.3969/j.issn.1673-3800.2017.09.006.

    QIUX M, HUANGY D, LIY, et al.Composite tower research status and development trend [J].Electrical Engineering, 2017(9): 1-3+9.DOI: 10.3969/j.issn.1673-3800.2017.09.006.

    [2] 阮少林, 陈国栋.500 kV复合材料单回路塔新型输配电分析 [J].云南电力技术, 2018, 46(6): 134-136.DOI: 10.3969/j.issn.1006-7345.2018.06.034.

    RUANS L, CHENG D.Comparison and analysis of 500 kV composite materialSingle loop tower [J].Yunnan Electric Power, 2018, 46(6): 134-136.DOI: 10.3969/j.issn.1006-7345.2018.06.034.

    [3] 胡超, 冯衡, 徐彬.750 kV输电线路复合材料横担塔的适用性研究 [J].电力勘测设计, 2016(1): 65-71.DOI: 10.3969/j.issn.1671-9913.2016.01.018.

    HUC, FENGH, XUB.Research on the applicability of composite cross arm tower for 750 kV transmission line [J].Electric Power Survey & Design, 2016(1): 65-71.DOI: 10.3969/j.issn.1671-9913.2016.01.018.

    [4] 左玉玺, 王虎长, 朱永平, 等.750 kV输电线路复合横担设计研究 [J].电网与清洁能源, 2013, 29(1): 1-8.DOI: 10.3969/j.issn.1674-3814.2013.01.001.

    ZUOY X,WANGH C, ZHUY P, et al.Research on the design of composite cross arm for 750 kV transmission line [J].Power System and Clean Energy, 2013, 29(1): 1-8.DOI: 10.3969/j.issn.1674-3814.2013.01.001.

    [5] 柏晓路, 雷雨泽, 刘文勋, 等.1 000 kV交流特高压输电线路复合横担应用研究 [J].电力勘测设计, 2020(增刊1): 120-126. DOI: 10.13500/j.dlkcsj.issn1671-9913.2020.S1.022.

    BAIX L, LEIY Z, LIUW X, et al.Research on the application of composite cross arm for 1 000 kV ultra high voltage AC transmission line [J].Electric Power Survey & Design, 2020(Supp.1): 120-126. DOI: 10.13500/j.dlkcsj.issn1671-9913.2020.S1.022.

    [6] 杜颖.强风地区500 kV同塔双回输电线路复合材料横担杆塔应用设计研究 [J].科技创新与应用, 2020(5):85-86.

    DUY.Application design of composite cross arm pole and tower for 500 kV double circuit transmission line on the same tower in strong wind area [J].Technology Innovation and Application, 2020(5): 85-86.

    [7] 李子扬, 张思祥, 张丽娟, 等.新型复合横担在1 000 kV特高压输电铁塔的应用 [J].山东电力技术, 2017(9):56-61.DOI: 10.3969/j.issn.1007-9904.2017.09.011.

    LIZ Y, ZHANGS X, ZHANGL J, et al.Application of the new composite cross arm load in 1 000 kV transmission tower [J].Shandong Electric Power, 2017, 44(9): 52-59.DOI: 10.3969/j.issn.1007-9904.2017.09.011.

    [8] 张禄琦, 郝阳, 李喜来, 等.特高压直流杆塔新型复合横担布置研究 [J].电网与清洁能源, 2019, 35(2):5 8-62+68.DOI: 10.3969/j.issn.1674-3814.2019.02.009.

    ZHANGL Q, HAOY, LIX L, et al.Study on the layout of new composite cross arms for the UHV DC tower [J].Advances of Power System & Hydroelectric Engineering, 2019, 35(2): 58-62+68.DOI: 10.3969/j.issn.1674-3814.2019.02.009.

    [9] 胡良全.电力行业用复合材料的发展 [J].玻璃钢/复合材料, 2012(3): 91-93.DOI: 10.3969/j.issn.1003-0999.2012.03.020.

    HUL Q.Development of composites for power industry [J].Composites Science and Engineering, 2012(3): 91-93.DOI: 10.3969/j.issn.1003-0999.2012.03.020.

    [10] 吴雄, 胡虔, 潘吉林, 等.复合材料杆塔及材料多因子老化特性 [J].高电压技术, 2016, 42(3): 908-913.DOI: 10.13336/j.1003-6520.hve.20160308026.

    WUX, HUQ, PANJ L, et al.Aging properties of composite material pole and its materials under multi-factor environment [J].High Voltage Engineering, 2016, 42(3): 908-913. DOI: 10.13336/j.1003-6520.hve.20160308026.

    [11] 朱岸明, 杨大渭, 刘云贺, 等.FRP复合材料杆塔横担研究应用现状及分析 [J].电网与清洁能源, 2015, 31(10): 76-82+88.DOI: 10.3969/j.issn.1674-3814.2015.10.015.

    ZHUA M, YANGD W, LIUY H, et al.Application and analysis of cross arms made from FRP composite materials in transmission towers [J].Advances of Power System & Hydroelectric Engineering, 2015, 31(10): 76-82+88.DOI: 10.3969/j.issn.1674-3814.2015.10.015.

    [12] 林文.基于覆冰地区500 kV输电线路抗冰设计探讨 [J].通讯世界, 2016(9):133-135.DOI: 10.3969/j.issn.1006-4222.2016.09.095.

    LINW.Discussion on anti icing design of 500 kV transmission line based on icing area [J].Telecom World, 2016(9): 133-135.DOI: 10.3969/j.issn.1006-4222.2016.09.095.

    [13] 肖宇, 杨磊.山区输电线路常规基础造价对比分析 [J].电力勘测设计, 2015(3):74-80.DOI: 10.13500/j.cnki.11-4908/tk.2015.03.018.

    XIAOY, YANGL.Comparison on common foundation cost of power transmission line in mountain area [J].Electric Power Survey & Design, 2015(3): 74-80.DOI: 10.13500/j.cnki.11-4908/tk.2015.03.018.

  • 期刊类型引用(0)

    其他类型引用(1)

图(3)  /  表(5)
计量
  • 文章访问数:  521
  • HTML全文浏览量:  213
  • PDF下载量:  35
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-09-09
  • 修回日期:  2021-11-28
  • 刊出日期:  2022-05-30

目录

    Bingqian WANG

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回