-
本文选择水线面面积小、稳定性好、作业水深范围广、能够很好地适应我国的海域特点的OC4-deepC半潜平台与波能浮子结合[10-11],如图1所示。
波浪能装置选择典型的圆柱形的点吸式作为研究对象。点吸式波能装置具有转换效率高、建造成本低、输出电能稳定、易于平台结合的优点[12-14]。
因此本文以波浪能浮子阵列-漂浮式风机平台集成系统(如图2所示)为研究对象,通过水动力计算软件SESAM-HydroD建立频域分析模型,得到水动力系数附加质量、辐射阻尼、波浪激振力等,利用Python二次开发,考虑最优PTO阻尼条件下,求解多体耦合运动方程,探究在目标海域波浪情况下,波能浮子外形尺寸和共振周期对集成系统发电功率的影响。目前仅考虑平台与波能浮子阵列间的耦合作用,尚未考虑风机的影响。
-
本文选择广东省某风电场海域为波能阵列-浮式平台集成系统布设目标海域,对该海域观测到的波浪数据进行整理和统计分析,该风电场海域的波浪分布情况如表1所示,由表1可知,该海域波浪主要波高1.0~3.0 m,主要波浪周期集中在3.0~7.0 s,占整个波浪周期的99%以上,平均波浪周期T=4.69 s。
表 1 广东某风电场海域波高Hj与波周期Tj联合概率分布Sj
Table 1. Joint probability distribution Sj of wave height Hj and wave period Tj in a wind farm in Guangdong
H/m T/s 1 2 3 4 5 6 7 8 9 10 11 12 13 Total 12.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 11.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 10.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.001 9.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.002 9.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.002 0.001 0.000 0.006 8.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.003 8.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.005 7.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.002 0.000 0.000 0.000 0.007 7.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.006 0.007 0.002 0.000 0.000 0.018 6.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.013 0.003 0.000 0.000 0.000 0.024 6.0 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.012 0.019 0.002 0.001 0.000 0.000 0.035 5.5 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.023 0.014 0.003 0.001 0.000 0.000 0.048 5.0 0.000 0.000 0.000 0.000 0.000 0.002 0.010 0.050 0.010 0.000 0.000 0.000 0.000 0.072 4.5 0.000 0.000 0.000 0.000 0.000 0.006 0.050 0.053 0.020 0.003 0.001 0.000 0.000 0.133 4.0 0.000 0.000 0.000 0.000 0.000 0.017 0.131 0.032 0.013 0.003 0.001 0.001 0.000 0.198 3.5 0.000 0.000 0.000 0.000 0.003 0.112 0.191 0.026 0.010 0.004 0.001 0.002 0.001 0.350 3.0 0.000 0.000 0.000 0.000 0.020 0.610 0.158 0.028 0.011 0.005 0.002 0.003 0.002 0.840 2.5 0.000 0.000 0.000 0.000 0.937 2.571 0.186 0.040 0.013 0.013 0.007 0.003 0.000 3.770 2.0 0.000 0.000 0.000 0.081 11.280 3.651 0.266 0.095 0.049 0.027 0.006 0.000 0.000 15.460 1.5 0.000 0.000 0.000 13.400 22.790 2.190 0.535 0.135 0.020 0.001 0.000 0.000 0.000 39.080 1.0 0.000 0.000 2.023 30.060 5.503 1.567 0.228 0.003 0.001 0.000 0.000 0.000 0.000 39.380 0.5 0.000 0.000 0.158 0.250 0.140 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.570 Total 0.000 0.000 2.181 43.790 40.690 10.750 1.763 0.510 0.206 0.081 0.025 0.008 0.004 100.000 -
由于OC4-DeepC平台固有周期远离风电场海域的谱峰周期,其垂荡运动相对于波能浮子来说很小,因此本文考虑将平台固定,波能浮子仅沿支撑杆件做垂荡运动。基于以上假设,建立波能浮子阵列中第i个浮子的运动方程:
$$ \begin{split} &\left[-{\omega }^{2}({m}_{i}+{a}_{ii})+i\omega \left({b}_{ii}+{B}_{{\rm{opt}},i}\right)+{C}_{i}\right]{z}_{i}+\\&\sum _{j=1,j\ne i}^{N}\left({-{\omega }^{2}{a}_{ij}+i\omega b}_{ij}\right){z}_{j}={F}_{{\rm{ex}},i} \end{split} $$ (1) 采用专业软件HydroD计算式(1)中的水动力系数aii、bii、aij、bij及Fex,i。
式中:
aii,bii ——第i个浮子的垂荡运动产生的附加质量、辐射阻尼;
aij,bij ——第j个浮子的运动对第i个浮子产生的附加质量、辐射阻尼;
mi,Ci,Fex,i ——第i个浮子的质量、恢复力和波浪激振力;
ω,zi,zj ——频率、第i、j个浮子的垂荡运动幅值。
采用单个波能装置的线性最优阻尼Bopt:
$$ {B}_{{\rm{opt}},i}=\sqrt{\frac{{\left(\left({m}_{i}+{a}_{ii}\right){\omega }^{2}-{C}_{i}\right)}^{2}}{{\omega }^{2}}+{{b}_{ii}}^{2}} $$ (2) 第i个浮子在最优PTO阻尼下的俘获功率Pi(
$ \omega $ )为:$$ {P}_{i}\left(\omega \right)=\frac{1}{2}{{\omega }^{2}B}_{{\rm{opt}},i}{\left|{z}_{i}\right|}^{2} $$ (3) 联合(1)~(3),求解得到波能阵列的第i个浮子的垂荡运动响应zi和俘获功率Pi。
波能阵列的发电功率Ptotal(T)为:
$$ {P}_{{\rm{total}}}\left(T\right)={\sum }_{i=1}^{N}{P}_{i}\left(T\right) $$ (4) 为了更简单衡量波能浮子的经济性,引入公式(5)波能阵列的功率体积比Pav(T):
$$ {P}_{{\rm{av}}}\left(T\right)=\frac{{P}_{{\rm{total}}}\left(T\right)}{\rho {V}_{{\rm{total}}}} $$ (5) 式中:
N ——浮子个数(个);
Vtotal ——N个浮子总体积(m³),Pav越小,则代表经济性更好,这里假定单位体积的波能装置的成本是一致的。
-
定义相互作用因子qmean,用于衡量相互作用对波浪能浮子WEC(Wave Energy Converter)阵列中功率吸收的影响。其定义为耦合波浪能浮子阵列WEC总功率与单个单独放置波浪能浮子WEC的功率的N倍的比值:
$$ {q}_{{\rm{mean}}}\left(T\right)=\frac{{P}_{{\rm{total}}}\left(T\right)}{N\times {P}_{{\rm{isolated}}}\left(T\right)} $$ (6) 式中:
Pisolated(T)——单个单独放置波浪能浮子WEC的最优发电功率(kW)。
通过模拟文献中Bellew的5×1半球形WEC阵列来验证HydroD频域模型[13],如图3所示。图3为最优PTO阻尼下5×1半球形WEC阵列的相互作用因子qmean的对比图,可以看出,通过HydroD建立的频域分析模型数值结果与已发表文献结果吻合良好,验证了模型的正确性。
-
HU等人[15]采用无量纲原则推导出无量纲固有频率与固有频率的关系式,指定固有频率ωp可得到随直径吃水比2r/d变化的圆柱形浮子的吃水d;即可以根据已知海况计算指定固有频率下,不同直径吃水比2r/d的圆柱形波浪能浮子WEC的吃水深度d。
$$ d=\mathrm{g}{\left(\dfrac{{\overline{\omega }}_{n}\left(\dfrac{2r}{d}\right)}{{\omega }_{{\rm{p}}}}\right)}^{2} $$ (7) $$ {\omega }_{{\rm{p}}}=\dfrac{2{\text{π}}}{{T}_{{\rm{p}}}} $$ (8) 基于目标海域的波浪特征,波浪周期主要集中在3.0~7.0 s,其中4.0~5.0 s波浪周期占比80%以上,因此假定目标海域的平均波浪T=4.69 s为波能浮子固有周期Tp,根据无量纲原则,计算得到一系列2r/d对应的浮子吃水d和半径r。
设计浮子间圆心距L1=4 r,波浪能浮子WEC与平台浮筒间间距L2≥R+3 r,选择最多可布置波浪能浮子数N=6的浮子进行水动力分析,探究不同直径吃水比的波浪能浮子WEC的发电性能和经济性,波浪能浮子WEC具体参数见表2,布置方式如图4所示。
表 2 波能浮子几何参数
Table 2. Geometric parameters of WEC
2r/d r d L1 L2 1.6 2.80 3.50 11.20 19.40 1.8 3.05 3.39 12.20 18.90 2.0 3.29 3.29 13.14 18.43 2.2 3.51 3.19 14.04 17.98 -
在水动力分析软件HydroD建立平台和浮子的耦合模型,进行频域分析得到平台-浮子的水动力系数,同时考虑单个浮子公式最优Bopt,求解运动方程(1),得到各个浮子的垂向响应Zi,带入公式(3)(4)得到各个浮子的发电功率Pi和浮子的总发电功率Ptotal。
图5反映了不同2r/d下波能浮子阵列总发电功率Ptotal随波浪周期变化关系。由图可知,同一2r/d的波能浮子阵列的总发电功率Ptotal随着波浪周期的增加而先增加后减小。同时,随着浮子2r/d的增加浮子的总发电功率Ptotal峰值是逐渐增加,频带宽度也略有增加。
图6反映了不同2r/d下波能浮子阵列的功率体积比Pav随周期的变化关系。由图可知,在2~4 s范围内,浮子的功率体积比基本一致,在4~6 s范围内,浮子的功率体积比随着2r/d的增大而减小,6 s之后则随着浮子的2r/d的增大而增大,因此说明在不同的周期范围内浮子的功率体积比变化趋势是不同的。因此在对不同的海域下,浮子的外形尺寸优化时,需要综合考虑浮子的发电性能和经济性。
-
计算目标海况下的年总发电功率,引入年总波浪功率Ptotal(year)和年单位体积比Pav(year)用来评估风电场海域内波能浮子的能量捕获性能:
$$ {P}_{{\rm{total}}\left({\rm{year}}\right)}={{\sum }_{j=1}^{M}{\left(\frac{{H}_{j}}{2}\right)}^{2}}\times {P_{{\rm{total}}}}\left({T}_{j}\right)\times {{S}_{j}} $$ (9) $$ {P}_{{\rm{av}}\left({\rm{year}}\right)}=\frac{{P}_{{\rm{total}}\left({\rm{year}}\right)}}{\rho {V}_{{\rm{total}}}} $$ (10) 式中:
Sj ——不同周期、波高情况下的联合概率分布;
Hj ——波高分布(m);
Tj ——周期分布(s);
Ρ ——海水密度(kg/m3),取1 025 kg/m3。
图7反映了风电场海域海况下波能浮子阵列年总发电功率Ptotal(year)和年单位体积比Pav(year)随2r/d变化关系。由图可知,风电场海域海况下波能阵列年总发电功率Ptotal(year)随着2r/d增大而逐渐增加,而年单位体积比Pav(year)变化较小,说明在不同2r/d的波能阵列之间造价的差异非常小。说明考虑到波能浮子阵列-平台系统的发电性能和经济效益,应选用2r/d更大的WEC与平台相结合。
-
因为波能浮子主要在固有周期附近工作,对波能浮子阵列的总发电功率有很大影响,因此考虑改变波能阵列的固有周期Tp,探索适合风电场海域的波能浮子固有周期。通过公式(4)分别计算共振周期Tp=3.50 s,4.00 s,4.50 s和4.69 s的浮子半径r,吃水d,并按布置原则布置。通过前面的验证发现直径吃水比2r/d越大波能阵列的发电功率越高,因此选择浮子数N=6的阵列中波能浮子2r/d较大的4组进行研究。探究不同固有周期Tp的波能阵列在风电场海域海况的年总发电功率Ptotal(year)和年单位体积比Pav(year)。表3列出来不同共振周期Tp下,波能浮子阵列相关性能参数。2r/d越大,则说明浮子越扁平。
表 3 海况下波能浮子阵列性能参数
Table 3. Performance parameters of WEC array in sea conditions
Tp/s 2r/d r/m d/m Ptotal(year)/kW Pav(year)/[W·(kg)−1] 3.5 4.0 3.09 1.54 145.9 51% 4.5 3.30 1.47 157.8 51% 5.0 3.50 1.40 168.3 51% 5.5 3.67 1.34 176.7 51% 4.0 3.2 3.54 2.21 216.3 40% 3.4 3.67 2.16 221.6 39% 3.5 3.73 2.13 223.8 39% 3.6 3.80 2.11 226.3 38% 4.5 1.8 3.05 3.39 122.3 20% 2.0 3.29 3.29 132.3 19% 2.2 3.51 3.19 141.1 19% 2.4 3.72 3.10 148.9 18% 4.7 1.4 2.75 3.94 108.3 19% 1.6 3.04 3.80 112.6 17% 1.8 3.31 3.68 127.6 16% 2.0 3.57 3.57 131.7 15% 由表可知,同一固有周期下,波能浮子阵列的年总发电功率Ptotal(year)随着2r/d的增大而增大,但年单位体积比Pav(year)变化较小。对比不同固有周期下,固有周期Tp越小,浮子的2r/d越大,浮子越扁平,相对的浮子的功率体积比也越大,即浮子的经济性越好。而波能浮子阵列的功率输出则是随着固有周期Tp的增大,先增大后减小,即在Tp=4.0 s时的年总发电功率Ptotal(year) 明显大于其他固有周期。综合考虑波能浮子的发电功率和经济性,Tp=4.0 s时总发电功率Ptotal(year) 最大达226 kW,明显大于其他固有周期,同时相比于Tp=3.5 s时,Ptotal(year)增加了约30%,而Pav(year)减小了约10%,故收益增加大于成本增加。综上,该风电场海域海况下Tp=4.0 s时波能阵列固有周期最优。
Power Optimization of Wave Energy Converter (WEC) Arrray Based on Sea Conditions of a Wind Farm
-
摘要:
目的 为了响应国家集约用海,发展清洁能源,助力碳中和,对海上风电-波浪能装置多能融合模式进行初步分析,对波能浮子进行优化设计,以获得更高的功率输出。 方法 依据势流理论,对漂浮式风机平台-波能浮子阵列进行仿真计算,分析浮子的外形尺寸和固有周期对浮子的输出功率的影响。 结果 仿真结果表明:同一固有周期下,波能浮子越扁平,波能浮子阵列的总发电功率越大,且浮子的经济性差异很小。对于海况下,不同固有周期的波能浮子阵列经济性差异较大,因此要综合分析考虑。 结论 在已知海域海况条件下,可以通过对波能浮子固有周期和外形尺度进行优化设计,使波能浮子获得更高的功率输出,提高单位海域能量产出。 Abstract:Introduction In order to respond to the national initiative of intensive sea use, develop clean energy, and contribute to carbon neutralization, a preliminary analysis was conducted on the multi-energy integration mode of offshore wind power and wave energy devices, and the WEC was optimized to achieve higher power output. Method Based on potential flow theory, the floating fan platform - WEC array was simulated to analyze the influence of the dimension and the inherent period of the WEC on the output power of the WEC. Result The simulation results show that under the same inherent period, the flatter the WEC is, the greater the total power of the WEC array is, and the economic difference of the WEC is small. For sea conditions, the economic difference of WEC array under different inherent periods is great, so it should be considered comprehensively. Conclusion In the known sea conditions, the inherent period and the dimenson of WECs can be optimized to achieve higher power output and increase energy output per unit sea area. -
Key words:
- wind and wave couppling /
- WEC /
- potential flow theory /
- inherent period /
- optimal power
-
表 1 广东某风电场海域波高Hj与波周期Tj联合概率分布Sj
Tab. 1. Joint probability distribution Sj of wave height Hj and wave period Tj in a wind farm in Guangdong
H/m T/s 1 2 3 4 5 6 7 8 9 10 11 12 13 Total 12.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 11.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 10.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.001 9.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.002 9.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.002 0.001 0.000 0.006 8.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.003 8.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.005 7.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.002 0.000 0.000 0.000 0.007 7.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.006 0.007 0.002 0.000 0.000 0.018 6.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.013 0.003 0.000 0.000 0.000 0.024 6.0 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.012 0.019 0.002 0.001 0.000 0.000 0.035 5.5 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.023 0.014 0.003 0.001 0.000 0.000 0.048 5.0 0.000 0.000 0.000 0.000 0.000 0.002 0.010 0.050 0.010 0.000 0.000 0.000 0.000 0.072 4.5 0.000 0.000 0.000 0.000 0.000 0.006 0.050 0.053 0.020 0.003 0.001 0.000 0.000 0.133 4.0 0.000 0.000 0.000 0.000 0.000 0.017 0.131 0.032 0.013 0.003 0.001 0.001 0.000 0.198 3.5 0.000 0.000 0.000 0.000 0.003 0.112 0.191 0.026 0.010 0.004 0.001 0.002 0.001 0.350 3.0 0.000 0.000 0.000 0.000 0.020 0.610 0.158 0.028 0.011 0.005 0.002 0.003 0.002 0.840 2.5 0.000 0.000 0.000 0.000 0.937 2.571 0.186 0.040 0.013 0.013 0.007 0.003 0.000 3.770 2.0 0.000 0.000 0.000 0.081 11.280 3.651 0.266 0.095 0.049 0.027 0.006 0.000 0.000 15.460 1.5 0.000 0.000 0.000 13.400 22.790 2.190 0.535 0.135 0.020 0.001 0.000 0.000 0.000 39.080 1.0 0.000 0.000 2.023 30.060 5.503 1.567 0.228 0.003 0.001 0.000 0.000 0.000 0.000 39.380 0.5 0.000 0.000 0.158 0.250 0.140 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.570 Total 0.000 0.000 2.181 43.790 40.690 10.750 1.763 0.510 0.206 0.081 0.025 0.008 0.004 100.000 表 2 波能浮子几何参数
Tab. 2. Geometric parameters of WEC
2r/d r d L1 L2 1.6 2.80 3.50 11.20 19.40 1.8 3.05 3.39 12.20 18.90 2.0 3.29 3.29 13.14 18.43 2.2 3.51 3.19 14.04 17.98 表 3 海况下波能浮子阵列性能参数
Tab. 3. Performance parameters of WEC array in sea conditions
Tp/s 2r/d r/m d/m Ptotal(year)/kW Pav(year)/[W·(kg)−1] 3.5 4.0 3.09 1.54 145.9 51% 4.5 3.30 1.47 157.8 51% 5.0 3.50 1.40 168.3 51% 5.5 3.67 1.34 176.7 51% 4.0 3.2 3.54 2.21 216.3 40% 3.4 3.67 2.16 221.6 39% 3.5 3.73 2.13 223.8 39% 3.6 3.80 2.11 226.3 38% 4.5 1.8 3.05 3.39 122.3 20% 2.0 3.29 3.29 132.3 19% 2.2 3.51 3.19 141.1 19% 2.4 3.72 3.10 148.9 18% 4.7 1.4 2.75 3.94 108.3 19% 1.6 3.04 3.80 112.6 17% 1.8 3.31 3.68 127.6 16% 2.0 3.57 3.57 131.7 15% -
[1] 王世明, 李泽宇, 于涛, 等. 多能互补海洋能集成发电技术研究综述 [J]. 海洋通报, 2019, 38(3): 241-249. DOI: 10.11840/j.issn.1001-6392.2019.03.001. WANG S M, LI Z Y, YU T, et al. A review of research on multi-energy complementary ocean energy integrated power generation technology [J]. Marine Science Bulletin, 2019, 38(3): 241-249. DOI: 10.11840/j.issn.1001-6392.2019.03.001. [2] 薛彩霞. 海洋能多能互补独立发电系统控制技术研究 [D]. 天津: 国家海洋技术中心, 2014. XUE C X. Research on control technology of multi-energy hybrid isolated power system based on ocean energy [D]. Tianjin: National Ocean Technology Center, 2014. [3] 张毅强. 适合与风力发电结合的波浪能及海流能共同发电型式探讨 [J]. 南方能源建设, 2018, 5(2): 60-64. doi: 10.16516/j.gedi.issn2095-8676.2018.02.007 ZHANG Y Q. Research on common generation type of wave energy and ocean current energy in conjunction with wind power generation [J]. Southern Energy Construction, 2018, 5(2): 60-64. doi: 10.16516/j.gedi.issn2095-8676.2018.02.007 [4] 史玉涛, 刘艳娇, 赵凌志. 阵列浮子式波浪能发电技术研究概述 [J]. 能源与环境, 2021(2): 12-14. DOI: 10.3969/j.issn.1672-9064.2021.02.005. SHI Y T, LIU Y J, ZHAO L Z. Overview of array floater wave power generation technology [J]. Energy and Environment, 2021(2): 12-14. DOI: 10.3969/j.issn.1672-9064.2021.02.005. [5] 周斌珍, 胡俭俭, 谢彬, 等. 风浪联合发电系统水动力学研究进展 [J]. 力学学报, 2019, 51(6): 1641-1649. DOI: 10.6052/0459-1879-19-202. ZHOU B Z, HU J J, XIE B, et al. Research progress in hydrodynamics of wind-wave combined power generation system [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1641-1649. DOI: 10.6052/0459-1879-19-202. [6] 胡缘, 杨绍辉, 何宏舟, 等. 半潜式多浮体波浪能发电装置的水动力性能分析 [J]. 水力发电学报, 2019, 38(9): 91-101. DOI: 10.11660/slfdxb.20190910. HU Y, YANG S H, HE H Z, et al. Hydrodynamic performance analysis of semi-submersible multi-body wave power plant [J]. Journal of Hydroelectric Engineering, 2019, 38(9): 91-101. DOI: 10.11660/slfdxb.20190910. [7] 顾煜炯, 谢典, 耿直. 阵列浮子式波浪能发电装置的水动力性能分析 [J]. 水力发电学报, 2016, 35(8): 114-120. doi: 10.11660/slfdxb.20160814 GU Y J, XIE D, GENG Z. Hydrodynamic analysis of wave power generation devices of array buoy type [J]. Journal of Hydroelectric Engineering, 2016, 35(8): 114-120. doi: 10.11660/slfdxb.20160814 [8] 王淇. 一种新型浮式风浪能混合利用系统概念设计与性能分析 [D]. 哈尔滨: 哈尔滨工程大学, 2016. WANG Q. The concept design and performance analysis of a new type floating hybrid wind-wave system [D]. Harbin: Harbin Engineering University, 2016. [9] 胡俭俭, 周斌珍, 刘品, 等. 浮式风机平台与多波浪能转换装置混合系统的设计与水动力性能分析 [C]//吴有生, 邵雪明, 王军. 第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议论文集(下册). 北京: 海洋出版社, 2019: 1012-1017. HU J J, ZHOU B Z, LIU P, et al. Optimal design and performance analysis of a hybrid system of floating wind platform and multiple wave energy converters [C]//WU Y S, SHAO X M, WANG J. Proceedings of the 30th National Conference on Hydrodynamics & 15th National Congress on Hydrodynamics. Beijing: Ocean Press, 2019: 1012-1017. [10] ROBERTSON A, JONKMAN J, MASCIOLA M, et al. Definition of the semisubmersible floating system for phase Ⅱ of OC4 [R]. Golden: NREL, 2014. [11] 张亮, 邓慧静. 浮式风机半潜平台稳性数值分析 [J]. 应用科技, 2011, 38(10): 13-17. DOI: 10.3969/j.issn.1009-671X.2011.10.004. ZHANG L, DENG H J. Numerical analysis on stability of the semi-submersible platform of floating wind turbines [J]. Applied Science and Technology, 2011, 38(10): 13-17. DOI: 10.3969/j.issn.1009-671X.2011.10.004. [12] ZHOU B Z, HU J J, SUN K, et al. Motion response and energy conversion performance of a heaving point absorber wave energy converter [J]. Frontiers in Energy Research, 2020, 8: 553295. DOI: 10.3389/fenrg.2020.553295. [13] 张恒铭. 波能装置与浮式防波堤集成系统的水动力特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019. DOI: 10.27060/d.cnki.ghbcu.2019.000141. ZHANG H M. Study on hydrodynamic characteristics of integrated system of wave energy converter and floating breakwater [D]. Harbin: Harbin Engineering University, 2019. DOI: 10.27060/d.cnki.ghbcu.2019.000141. [14] ZHANG H M, ZHOU B Z, VOGEL C, et al. Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter [J]. Applied Energy, 2020, 257: 114212. DOI: 10.1016/j.apenergy.2019.114212. [15] HU J J, ZHOU B Z, VOGEL C, et al. Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters [J]. Applied Energy, 2020, 269: 114998. DOI: 10.1016/j.apenergy.2020.114998.