-
A1. 燃料成本
${S}_{1}={C}_{\mathrm{f}\mathrm{u}\mathrm{e}\mathrm{l}}{B}_{\mathrm{f}\mathrm{u}\mathrm{e}\mathrm{l}}$ [16]$$ {S}_{1}={C}_{\mathrm{f}\mathrm{u}\mathrm{e}\mathrm{l}}{B}_{\mathrm{f}\mathrm{u}\mathrm{e}\mathrm{l}} $$ (1) 式中:
$ {S}_{1} $ ——燃料成本($);$ {C}_{\mathrm{f}\mathrm{u}\mathrm{e}\mathrm{l}} $ ——单位燃料成本($/t);$ {B}_{\mathrm{f}\mathrm{u}\mathrm{e}\mathrm{l}} $ ——燃料燃烧量(t)。A2. 标准化发电费用[19]
LCOE=ACC×总运行和维修费用/净发电量
$$ {\rm{ACC}}={\rm{TC}}\times {\rm{CRF}} $$ (2) 式中:
TC ——总投资;
CRF ——资金回报率,文献中选用0.086。
A3. 综合燃烧特性指数[11]
$$ S=\dfrac{{\left(\dfrac{{\rm{d}}\omega }{{\rm{d}}t}\right)}_{\mathrm{m}\mathrm{a}\mathrm{x}}\cdot {\left(\dfrac{{\rm{d}}\omega }{{\rm{d}}t}\right)}_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}}}{{\theta }_{\mathrm{i}}^{2}\cdot {\theta }_{\mathrm{h}}^{}} $$ (3) 式中:
$ \mathrm{S} $ ——综合燃烧特性指数($ {\text{%}}^{2}\cdot({\mathrm{m}\mathrm{i}\mathrm{n}}^{2}·$ ℃3)−1);$ {\theta }_{\mathrm{h}}^{} $ ——燃尽温度(℃);$ {\theta }_{\mathrm{i}}^{} $ ——着火温度(℃);${\left(\dfrac{{\rm{d}}\omega }{{\rm{d}}t}\right)}_{\mathrm{m}\mathrm{a}\mathrm{x}}$ ——最大燃烧速率($ \mathrm{\%}/\mathrm{m}\mathrm{i}\mathrm{n} $ );${\left(\dfrac{{\rm{d}}\omega }{{\rm{d}}t}\right)}_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}}$ ——平衡失重速率($ \mathrm{\%}/\mathrm{m}\mathrm{i}\mathrm{n} $ )。
Research Progress on Key Technologies for Coupled Combustion of Coal and Solid Waste in Coal-Fired Unit
-
摘要:
目的 燃煤与固体废弃物混合掺烧不仅可以实现固废的能量回收利用,也是实现燃煤发电的碳减排的路径之一。 方法 文章综述讨论了燃煤电站掺混固废的研究工作,主要介绍了基于目前主流的电站锅炉为反应器开展燃煤与不同固废掺混的燃烧应用与技术发展;从燃料经济性、混合燃料的飞灰特征、污染物排放以及碳税角度评价燃煤掺混固废的燃烧技术发展;最后讨论了直接掺混和间接掺混的技术的特点。 结果 燃煤直接掺混固废燃烧时需要尽可能减少对锅炉运行的影响,特别是气体污染物的排放以及飞灰对换热面的影响和飞灰无害化处置。间接掺混可以避免混合燃料燃烧对炉膛的影响,但是需要较高的硬件成本投资且耦合技术较为复杂。富氧燃烧技术依旧需要对现有锅炉结构优化来提高该技术的适用性。 结论 直接掺混可实现性与成本优于间接掺混,且循环流化床燃料适应广的特点有利于燃煤直接掺混固废燃烧技术的应用,随着基于循环流化床的富氧燃烧技术的发展将更有利于实现火电厂的碳减排。 Abstract:Introduction The co-combustion of coal and solid waste can not only realize the energy recycling of solid waste, but also is one of the paths to realize carbon emission reduction of coal-fired power generation. Method This paper reviewed the study on co-combustion of coal and solid waste in coal-fired power plants, and mainly introduced the combustion application and technology development of co-combustion of coal and different solid wastes based on the current mainstream power plant boiler as a reactor; Evaluated the development of co-combustion technology of coal and solid waste from the perspectives of fuel economy, fly ash characteristics of mixed fuels, pollutant emissions, and carbon tax; Finally discussed the characteristics of direct and indirect mixing technologies. Result Direct co-combustion of coal and solid waste is required to minimize the impact on boiler operation, especially the emission of gas pollutants, the impact of fly ash on heat transfer surfaces, and the harmless disposal of fly ash. Indirect co-combustion can avoid the influence of mixed fuel combustion on the furnace, but requires high hardware cost investment and more complicated coupling technology. The oxygen-enriched combustion technology still needs to optimize the existing boiler structure to improve the applicability of the technology. Conclusion The direct co-combustion is better than the indirect co-combustion considering the realizability and the cost, and the extensive adaptability of circulating fluidized bed fuel is conducive to the application of direct co-combustion technology of coal and solid waste. With the development of the oxygen- enriched combustion technology based on the circulating fluidized bed, it is more conducive to realize carbon emission reduction in coal-fired power plant. -
[1] 郭慧娜, 吴玉新, 王学斌, 等. 燃煤机组耦合农林生物质发电技术现状及展望 [J]. 洁净煤技术, 2022, 28(3): 12-22. DOI: 10.13226/j.issn.1006-6772.cc22011201. GUO H N, WU Y X, WANG X B, et al. Current status of power generation technology of the agriculture and forest biomass co-firing in coal-fired power plants [J]. Clean Coal Technology, 2022, 28(3): 12-22. DOI: 10.13226/j.issn.1006-6772.cc22011201. [2] 国家能源局,生态环境部.国家能源局 生态环境部关于耦合生物质发电技改试点项目建设的通知: 国能发电力〔2018〕53号[EB/OL]. (2018-06-21)[2022-06-16]. http://drc.gd.gov.cn/attachements/2019/01/09/37adc6163552539685bbd907c645c210.pdf. National Energy Adminstration, Ministry of Ecology and Environment. Notice of National Energy Adminstration and Ministry of Ecology and Environment on the construction of the coupled biomass power generation technical transformation pilot project: State Energy Development Power〔2018〕No. 53[EB/OL] (2018-06-21) [2022-06-16]. http://drc.gd.gov.cn/attachements/2019/01/09/37adc6163552539685bbd907c645c210.pdf. [3] LIU H M, WANG Y C, ZHAO S L, et al. Review on the current status of the co-combustion technology of organic solid waste (OSW) and coal in China [J]. Energy & Fuels, 2020, 34(12): 15448-15487. DOI: 10.1021/acs.energyfuels.0c02177. [4] LEE S H, LEE T H, JEONG S M, et al. Economic analysis of a 600 MWe ultra supercritical circulating fluidized bed power plant based on coal tax and biomass co-combustion plans [J]. Renewable Energy, 2019, 138: 121-127. DOI: 10.1016/j.renene.2019.01.074. [5] 戴勇, 余婷. 某生活垃圾焚烧厂掺烧一般工业有机固废烟气净化的应用 [J]. 机电工程技术, 2021, 50(4): 238-242. DOI: 10.3969/j.issn.1009-9492.2021.04.066. DAI Y, YU T. Application of co-processing general industrial organic solid waste flue gas purification in a municipal waste incineration plant [J]. Mechanical & Electrical Engineering Technology, 2021, 50(4): 238-242. DOI: 10.3969/j.issn.1009-9492.2021.04.066. [6] 王飞, 张盛, 王丽花. 燃煤耦合污泥焚烧发电技术研究进展 [J]. 洁净煤技术, 2022, 28(3): 82-94. DOI: 10.13226/j.issn.1006-6772.cc22011001. WANG F, ZHANG S, WANG L H. Research progress of coal-fired coupled sludge incineration power generation technology [J]. Clean Coal Technology, 2022, 28(3): 82-94. DOI: 10.13226/j.issn.1006-6772.cc22011001. [7] 张世鑫, 蔡芳龙, 陈玉洪, 等. 大型CFB锅炉掺烧生物质及城市固废可行性分析 [J]. 中国资源综合利用, 2017, 35(7): 64-68. DOI: 10.3969/j.issn.1008-9500.2017.07.027. ZHANG S X, CAI F L, CHEN Y H, et al. Feasibility analysis of large CFB boiler mixed burning biomass fuels and "Urban Solid Waste" [J]. China Resources Comprehensive Utilization, 2017, 35(7): 64-68. DOI: 10.3969/j.issn.1008-9500.2017.07.027. [8] 武继旭, 严雪萍, 李晔, 等. 生活垃圾衍生燃料掺烧过程环境影响分析研究 [J]. 工业安全与环保, 2015, 41(3): 14-17. DOI: 10.3969/j.issn.1001-425X.2015.03.005. WU J X, YAN X P, LI Y, et al. Analysis on environmental impact of refuse derived fuel mix burning [J]. Industrial Safety and Environmental Protection, 2015, 41(3): 14-17. DOI: 10.3969/j.issn.1001-425X.2015.03.005. [9] 张晴, 莫华, 徐海红, 等. 燃煤电厂掺烧废弃物现状及环境管理建议 [J]. 环境工程, 2020, 38(6): 202-207. DOI: 10.13205/j.hjgc.202006033. ZHANG Q, MO H, XU H H, et al. Present situation of co-combustion of waste and coal in power plants and suggestions on environmental management [J]. Environmental Engineering, 2020, 38(6): 202-207. DOI: 10.13205/j.hjgc.202006033. [10] 张佳佳, 邢献军, 马培勇, 等. 低温烘焙下城市生活垃圾与烟煤的混燃特性 [J]. 煤炭转化, 2021, 44(2): 35-42. DOI: 10.19726/j.cnki.ebcc.202102005. ZHANG J J, XING X J, MA P Y, et al. Co-combustion characteristics of bituminous coal and municipal solid waste under torrefaction [J]. Coal Conversion, 2021, 44(2): 35-42. DOI: 10.19726/j.cnki.ebcc.202102005. [11] 徐文静, 李平, 王凤, 等. 气化细渣与原料煤的混合燃烧特性 [J]. 石油学报(石油加工), 2021, 37(1): 224-229. DOI: 10.3969/J.issn.1001-8719.2021.01.024. XU W J, LI P, WANG F, et al. Co-combustion characteristics of gasification fine slag and raw coal [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(1): 224-229. DOI: 10.3969/J.issn.1001-8719.2021.01.024. [12] 王俊, 龙慎伟, 马同胜, 等. 660 MW煤粉锅炉掺烧生物质数值模拟 [J]. 洁净煤技术, 2022, 28(5): 143-151. DOI: 10.13226/j.issn.1006-6772.21020101. WANG J, LONG S W, MA T S, et al. Numerical simulation of co-firing characteristics of coal and biomass in a 660 MW boiler [J]. Clean Coal Technology, 2022, 28(5): 143-151. DOI: 10.13226/j.issn.1006-6772.21020101. [13] 杨卧龙, 倪煜, 曹泷. 生物质直接混烧技术在燃煤电站的应用研究进展 [J]. 可再生能源, 2021, 39(8): 1007-1012. DOI: 10.3969/j.issn.1671-5292.2021.08.003. YANG W L, NI Y, CAO L. Progress of biomass direct co-firing for coal-fired boilers [J]. Renewable Energy Resources, 2021, 39(8): 1007-1012. DOI: 10.3969/j.issn.1671-5292.2021.08.003. [14] 张世鑫, 史磊, 许燕飞, 等. 煤和生物质、固废直燃耦合发电技术应用 [J]. 电站系统工程, 2021, 37(4): 12-16. ZHANG S X, SHI L, XU Y F, et al. Application of power generation by coupling direct-combustion of biomass, solid waste and coal [J]. Power System Engineering, 2021, 37(4): 12-16. [15] 岑可法. 煤炭高效清洁低碳利用研究进展 [J]. 科技导报, 2018, 36(10): 66-74. DOI: 10.3981/j.issn.1000-7857.2018.10.007. CEN K F. Research progress and outlook for efficient, clean and low-carbon coal utilization [J]. Science & Technology Review, 2018, 36(10): 66-74. DOI: 10.3981/j.issn.1000-7857.2018.10.007. [16] 李丞亮. 煤泥掺烧循环流化床锅炉机组运行分析与经济性研究 [D]. 北京: 华北电力大学, 2017. LI C L. Operation analysis and economic research on blending combustion with coal slime in circulating fluidized bed boiler [D]. Beijing: North China Electric Power University, 2017. [17] GLUSHKOV D, KUZNETSOV G, PAUSHKINA K. Switching coal-fired thermal power plant to composite fuel for recovering industrial and municipal waste: combustion characteristics, emissions, and economic effect [J]. Energies, 2020, 13(1): 259. DOI: 10.3390/en13010259. [18] DMITRIENKO M A, STRIZHAK P A. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: an introductory review [J]. Science of the Total Environment, 2018, 613-614: 1117-1129. DOI: 10.1016/j.scitotenv.2017.09.189. [19] SAHU P, PRABU V. Techno-economic analysis of co-combustion of Indian coals with municipal solid waste in subcritical and supercritical based steam turbine power generating carbon-negative systems [J]. Energy, 2021, 233: 121053. DOI: 10.1016/j.energy.2021.121053. [20] 谢兴旺. 流化床中煤与生物质混烧实验与数值模拟研究 [D]. 南京: 东南大学, 2018. XIE X W. Experimental investigation and numerical simulation of co-combustion of coal and biomass in fluidized bed [D]. Nanjing: Southeast University, 2018. [21] BAJRACHARYA N, ALE B B, SINGH R M, et al. Waste to energy: an assessment of application of the selective fuel for applications in industries using a mixture of "A" grade coal and municipal solid waste [J]. Journal of the Institute of Engineering, 2017, 12(1): 142-168. DOI: 10.3126/jie.v12i1.16887. [22] 刘贺, 刘建忠, 陈建, 等. 几种典型固废与神华煤掺烧的结渣特性 [J]. 化工进展, 2021, 41(1): 443-452. DOI: 10.16085/j.issn.1000-6613.2021-0326. LIU H, LIU J Z, CHEN J, et al. Slagging properties of several typical solid wastes mixed with Shenhua coal [J]. Chemical Industry and Engineering Progress, 2021, 41(1): 443-452. DOI: 10.16085/j.issn.1000-6613.2021-0326. [23] QI X B, SONG G L, SONG W J, et al. Combustion performance and slagging characteristics during co-combustion of Zhundong coal and sludge [J]. Journal of the Energy Institute, 2018, 91(3): 397-410. DOI: 10.1016/j.joei.2017.02.002. [24] 蒋孟宴, 张自丽, 孙光, 等. 0.3 MWth循环流化床污泥与煤掺烧试验 [J]. 洁净煤技术, 2022, 28(03): 130-138. DOI: 10.13226/j.issn.1006-6772.CC22012701. JIANG M Y, ZHANG Z L, SUN G, et al. Co-combustion characteristic of sewage sludge and coal in 0.3 MWth circulating fluidized bed [J]. Clean Coal Technology, 2022, 28(03): 130-138. DOI: 10.13226/j.issn.1006-6772.CC22012701. [25] 董长青, 金保升, 仲兆平. 城市固体废弃物与煤循环流化床混燃过程中N2O排放的实验研究 [J]. 能源研究与利用, 2001(4): 33-35. DOI: 10.3969/j.issn.1001-5523.2001.04.010. DONG C Q, JIN B S, ZHONG Z P. Experimental study on N2O emission of co-combustion of municipal solid wastes and coal in circulating fluidized bed [J]. Energy Research & Utilization, 2001(4): 33-35. DOI: 10.3969/j.issn.1001-5523.2001.04.010. [26] 慕青林. 铁矿尾砂在型煤燃烧过程中固硫作用的研究 [D]. 济南: 山东大学, 2018. MU Q L. Study on sulfur fixation of iron ore tailings during briquette combustion [D]. Ji'nan: Shandong University, 2018. [27] PLIS A, LASEK J, SKAWIŃSKA A, et al. Thermo-chemical properties of biomass from Posidonia oceanica [J]. Chemical Papers, 2014, 68(7): 879-889. DOI: 10.2478/s11696-013-0532-4. [28] QIN J G, ZHAO R D, CHEN T J, et al. Co-combustion of municipal solid waste and coal gangue in a circulating fluidized bed combustor [J]. International Journal of Coal Science & Technology, 2019, 6(2): 218-224. DOI: 10.1007/s40789-018-0231-4. [29] LU L, ISMAIL T M, JIN Y Q, et al. Numerical and experimental investigation on co-combustion characteristics of hydrothermally treated municipal solid waste with coal in a fluidized bed [J]. Fuel Processing Technology, 2016, 154: 52-65. DOI: 10.1016/j.fuproc.2016.08.007. [30] PENG N N, LI Y, LIU Z G, et al. Emission, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste (MSW) and coal co-combustion [J]. Science of the Total Environment, 2016, 565: 1201-1207. DOI: 10.1016/j.scitotenv.2016.05.188. [31] 范翼麟, 王志超, 王一坤, 等. 碳税交易下的典型生物质混烧技术经济分析 [J]. 洁净煤技术, 2021, 27(4): 111-116. DOI: 10.13226/j.issn.1006-6772.CE21033001. FAN Y L, WANG Z C, WANG Y K, et al. Techno-economic analysis of typical biomass co-combustion under carbon taxtrading [J]. Clean Coal Technology, 2021, 27(4): 111-116. DOI: 10.13226/j.issn.1006-6772.CE21033001. [32] 杨占斌. 煤粉炉协同处置固体废物典型污染物释放特征研究 [D]. 长春: 吉林建筑大学, 2019. YANG Z B. Study on release of typical pollutants characteristics for co-disposal solid waste in pulverized coal fired boiler [D]. Changchun: Jilin Jianzhu University, 2019. [33] 肖海平, 王铭玮, 郭正旺, 等. 燃煤机组协同处理焦化固废中污染物的排放特性 [J]. 洁净煤技术, 2022, 28(3): 49-55. DOI: 10.13226/j.issn.1006-6772.CC22011401. XIAO H P, WANG M W, GUO Z W, et al. Pollutant emission characteristics of coal-fired unit collaborative treatment of coking solid waste [J]. Clean Coal Technology, 2022, 28(3): 49-55. DOI: 10.13226/j.issn.1006-6772.CC22011401. [34] 胡南, 谭雪梅, 刘世杰, 等. 循环流化床生物质直燃发电技术研究进展 [J]. 洁净煤技术, 2022, 28(3): 32-40. DOI: 10.13226/j.issn.1006-6772.CC21062201. HU N, TAN X M, LIU S J, et al. Research progress on power generation of biomass direct combustion in circulating fluidized bed [J]. Clean Coal Technology, 2022, 28(3): 32-40. DOI: 10.13226/j.issn.1006-6772.CC21062201. [35] 曹通, 方立军, 李鸿远. 循环流化床锅炉掺烧污泥的炉内燃烧数值模拟研究 [J]. 锅炉技术, 2017, 48(2): 30-35. DOI: 10.3969/j.issn.1672-4763.2017.02.007. CAO T, FANG L J, LI H Y. A Numerical simulation of co-combustion of sludge on a circulating fluidized bed boiler [J]. Boiler Technology, 2017, 48(2): 30-35. DOI: 10.3969/j.issn.1672-4763.2017.02.007. [36] 柯希玮, 孙国瑞, 黄中, 等. 330 MWe循环流化床锅炉掺烧污泥性能影响 [J]. 洁净煤技术, 2022, 28(3): 102-108. DOI: 10.13226/j.issn.1006-6772.CC21081401. KE X W, SUN G R, HUANG Z, et al. Operation characteristic analysis on co-combustion of sludge and coal in a 330 MWe circulating fluidized bed boiler [J]. Clean Coal Technology, 2022, 28(3): 102-108. DOI: 10.13226/j.issn.1006-6772.CC21081401. [37] 王晓磊, 陈贵锋, 李文博, 等. 双碳背景下煤炭清洁高效利用方向构建 [J]. 煤质技术, 2021, 36(6): 1-5. DOI: 10.3969/j.issn.1007-7677.2021.06.001. WANG X L, CHEN G F, LI W B, et al. Construction of clean and efficient utilization direction of coal under the background of double carbon [J]. Coal Quality Technology, 2021, 36(6): 1-5. DOI: 10.3969/j.issn.1007-7677.2021.06.001. [38] PAN P Y, PENG W K, LI J R, et al. Design and evaluation of a conceptual waste-to-energy approach integrating plasma waste gasification with coal-fired power generation [J]. Energy, 2022, 238: 121947. DOI: 10.1016/j.energy.2021.121947. [39] ZHANG X T, LI K Y, ZHANG C, et al. Performance analysis of biomass gasification coupled with a coal-fired boiler system at various loads [J]. Waste Management, 2020, 105: 84-91. DOI: 10.1016/j.wasman.2020.01.039. [40] 谢妍, 王赫阳, 赵军, 等. 炉内烟气成分对富氧燃烧锅炉传热特性的影响 [J]. 燃烧科学与技术, 2022, 28(3): 283-291. DOI: 10.11715/rskxjs.R202101014. XIE Y, WANG H Y, ZHAO J, et al. Influence of flue gas composition on the heat transfer characteristics of oxy-fired boiler [J]. Journal of Combustion Science and Technology, 2022, 28(3): 283-291. DOI: 10.11715/rskxjs.R202101014. [41] 张啸天, 李诗媛, 李伟. 生物质与煤混合富氧燃烧过程中NO和N2O的排放特性研究 [J]. 可再生能源, 2017, 35(2): 159-165. DOI: 10.13941/j.cnki.21-1469/tk.2017.02.001. ZHANG X T, LI S Y, LI W. Study on NO and N2O emission characteristics during co-combustion of biomass and coal in oxy-fuel CFB combustor [J]. Renewable Energy Resources, 2017, 35(2): 159-165. DOI: 10.13941/j.cnki.21-1469/tk.2017.02.001. [42] 龚振, 宋长忠, 贾相如, 等. 富氧气氛下循环流化床中生物质与煤矸石燃烧污染物排放研究 [J]. 中国电机工程学报, 2020, 40(12): 3951-3958. DOI: 10.13334/j.0258-8013.pcsee.191585. GONG Z, SONG C Z, JIA X R, et al. Study on pollutant emission from biomass and gangue combustion in CFB under oxygen-enriched Atmosphere [J]. Proceedings of the CSEE, 2020, 40(12): 3951-3958. DOI: 10.13334/j.0258-8013.pcsee.191585. [43] BHUIYAN A A, NASER J. CFD modelling of co-firing of biomass with coal under oxy-fuel combustion in a large scale power plant [J]. Fuel, 2015, 159: 150-168. DOI: 10.1016/j.fuel.2015.06.058. [44] LIU Q W, ZHONG W Q, YU A B, et al. Co-firing of coal and biomass under pressurized oxy-fuel combustion mode: experimental test in a 10 kWth fluidized bed [J]. Chemical Engineering Journal, 2022, 431: 133457. DOI: 10.1016/j.cej.2021.133457.