-
本试验综合考虑了原型几何尺寸、海洋水文条件和试验室设备能力等因素,从而确定单桩式海上风机模型试验的缩尺比
$ \lambda $ =1∶80[16],下文中出现的参数除单独指出外,均为模型尺寸。本试验以几何相似和弗洛德相似律为相似准则为理论依据建立与其他参数的相似关系。本次模型试验选取的模型采用钢材制成的圆管,以下简称单桩,该单桩模型的直径为7.5 cm,对应于全尺寸的NREL-5 MW的海上风机的直径为6 m,壁厚是2.0 mm[17]。根据相似定律得到刚性单桩的基本结构参数如表1所示。
表 1 单桩模型参数
Table 1. Parameters of monopile model
单桩参数 模型参数 原型参数 缩尺比λ 长度 7.5 cm 6.0 m 80 高度 120 cm 96.0 m 80 管壁厚度 2 mm 0.160 m 80 密度 7.85 t/m3 7.85 t/m3 1 -
本次模型试验在非线性波浪水槽中开展,该试验水槽详见图1,该水槽尺寸为长60.0 m×宽4.0 m×高2.5 m,试验可用水深范围为0.2~2.0 m,造波板[18]可生成波浪为周期0.5~5.0 s,水槽的前端装有推板式造波机。聚焦波试验方面,将单桩的安装位置移动到距离造波板15.78 m的底坡平底部分。具体安装位置如图2所示。具体安装完成的模型如图3所示。
-
Tromans等[19]提出的NewWave理论是目前使用较为广泛的理论。本次聚焦波的实验室造波方法原理如下。根据长波传播快、短波传播慢的原理[20],在指定位置xb和指定时间tb产生二维聚焦波浪的波面可以写成:
$$ \eta \left( {x,t} \right) = \displaystyle \sum\limits_{i = 1}^N {{a_i}\cos \left[ {{k_i}\left( {x - {x_{\rm{b}}}} \right) - {\omega _i}\left( {t - {t_{\rm{b}}}} \right)} \right]} $$ (1) 式中:
N ——组成波的个数;
ai ——组成波的振幅;
ki ——波数;
ωi——频率(Hz)。
波数与频率ωi满足色散关系。各组成波的振幅ai取决于波浪的频谱分布形式。定义A为聚焦点处的波浪振幅,则有:
$$ A = \displaystyle \sum\limits_{i = 1}^N {{a_i}} $$ (2) 当给定的聚焦波幅A为正值时,波峰聚焦;当A为负值时,波谷聚焦。实际上,在大波峰的区域内,极限波的平均波形与海浪谱的自相关函数的形状基本相似。最大波浪的振幅由瑞利分布确定。生成聚焦波组成波的振幅可表示为
$$ {a_i} = A{S_i}\left( \omega \right)\Delta {\omega _i}/\displaystyle \sum\limits_i {{S_i}\left( \omega \right)} \Delta {\omega _i} $$ (3) 式中:
Si (ω)——能量谱分布;
△ωi ——频率间隔。
本文采用JONSWAP谱型,其谱的形状为:
$$ S\left( \omega \right) = {\left( {\dfrac{f}{{{f_{\rm{p}}}}}} \right)^{ - S}}{f_{\rm{p}}}\exp \left[ { - 1.25{{\left( {\dfrac{f}{{{f_{\rm{p}}}}}} \right)}^{ - 4}}} \right]{\gamma ^{\exp \left[ { - {{\left( {\tfrac{f}{{{f_{\rm{p}}}}}} \right)}^2}/2{\sigma ^2}} \right]}} $$ (4) 式中:
σ = 0.07 (f≤fp);
σ = 0.09 (f≤fp);
fp——谱峰频率(Hz)。
对于在指定位置和时间聚焦的波浪,其特性主要取决于波浪的频谱、频率分布宽度、波浪大小等,本次实验采用波谷聚焦,聚焦位置在斜坡上端的平坡上。
-
聚焦波工况参数如表2所示。
表 2 聚焦波工况
Table 2. Focused wave conditions
工况 fp/Hz fmin~fmax/
Hz△f/Hz N Ts/s Hs/cm d/m 造波板
距离/mLC1 1.25 0.8~1.8 1.0 51 0.8 0.025 0.31 15.78 LC2 1.25 0.8~1.8 1.0 51 0.8 0.020 0.31 16.49 LC3 1.25 0.8~1.8 1.0 51 0.8 0.015 0.31 18.16 -
本次试验共测试了单桩周围8个点的波浪爬高,所用测量仪器为电容式浪高仪,其量程为0~60 cm,采样频率为50 Hz。单桩周围8个点的位置命名图如图4所示。
来流方向为x正向。同时本试验也测量了单桩底部的波浪荷载,测量用传感器为六向测力天平,其x方向的量程为0~200 N,采样频率为1000 Hz。
在安装测力传感器方面,将单桩以下的部分安装在深槽底部,并在深槽上方盖上盖板,还原水底的初始平底状态,防止水流与坡底深槽内的六向测力传感器发生额外的相互作用,如图5所示。
Experimental Research on the Dynamic Characteristics of Offshore Wind Turbine Model Under the Action of Highly Nonlinear Waves
-
摘要:
目的 单桩式基础是目前近海海上风电场应用最广泛的支撑结构。中国海洋环境多为浅水和中等水深,受到非线性波浪影响较为明显。与行进波相比,聚焦波可以在短时间内形成一个作用在桩柱上、比常规波浪力大的冲击力,从而影响海上风机的运行性能和疲劳寿命。文章旨在探究强非线性波浪作用下海上风机单桩基础荷载特性,掌握聚焦波与基础相互作用规律,为工程设计提供参考。 方法 文章采用水池模型试验的方法对NREL 5 MW单桩海上风机开展研究,缩尺比例为1∶80。结合我国东部沿海风电场的海洋环境条件,选取了三种典型聚焦波模型,通过浪高仪器和测力天平分别记录了不同工况下单桩周围波浪爬高和底部受力变化情况。 结果 结果表明:桩基所受的水平波浪力具有很强的瞬态性;单桩基础所受水平波浪力在聚焦波的作用下会突然增大,在波谷会受到反向冲击力。 结论 文章揭示了聚焦波引起的海上风机单桩基础荷载变化规律,证实了非线性波浪对于风机基础动力特性的重要影响,相关成果具有较高的理论和工程应用价值。 Abstract:Introduction Monopile foundation is currently the most widely used support structure for offshore wind farms. China's marine environment is mostly shallow water and medium water depth areas, which is obviously affected by nonlinear waves. Compared with the traveling wave, the focusing waves can form an impact force on the pile column in a short time, which is larger than the conventional wave force, and undermines the operational performance and fatigue life of the offshore wind turbines. Method In this paper, NREL 5 MW monopile wind turbine study was carried out according to the pool model test method at the reduced scale of 1∶80. In combination with the marine environmental conditions of China's eastern coastal wind farms, we selected three typical focusing wave models, and recorded the changes of the wave runup around the monopile and the force on the bottom under different working conditions using wave height meter and force balance. Result The results show that: the horizontal wave force on the pile foundation is significantly transient, and will suddenly increase when the focusing waves act on the monopile foundation, and the monopile foundation receives the reverse impact force at the trough of focusing wave. Conclusion This paper reveals the change law of load on monopile foundation of offshore wind turbine caused by focusing wave, confirms the important influence of nonlinear wave on the dynamic characteristics of wind turbine foundation. The results are of high theoretical value and engineering application value. -
Key words:
- offshore wind power /
- offshore wind turbines /
- focused waves /
- model tests /
- dynamic response analysis
-
表 1 单桩模型参数
Tab. 1. Parameters of monopile model
单桩参数 模型参数 原型参数 缩尺比λ 长度 7.5 cm 6.0 m 80 高度 120 cm 96.0 m 80 管壁厚度 2 mm 0.160 m 80 密度 7.85 t/m3 7.85 t/m3 1 表 2 聚焦波工况
Tab. 2. Focused wave conditions
工况 fp/Hz fmin~fmax/
Hz△f/Hz N Ts/s Hs/cm d/m 造波板
距离/mLC1 1.25 0.8~1.8 1.0 51 0.8 0.025 0.31 15.78 LC2 1.25 0.8~1.8 1.0 51 0.8 0.020 0.31 16.49 LC3 1.25 0.8~1.8 1.0 51 0.8 0.015 0.31 18.16 -
[1] 李金宣, 王占行, 柳淑学. 多向聚焦波浪作用下直立圆柱受力的实验研究 [J]. 水动力学研究与进展, 2012, 27A(4): 409-416. DOI: 10.3969/j.issn.1000-4874.2012.04.007. LI J X, WANG Z X, LIU S X. Experimental study of impact force on a vertical cylinder in multi-directional focused wave [J]. Journal of hydrodynamics, 2012, 27A(4): 409-416. DOI: 10.3969/j.issn.1000-4874.2012.04.007. [2] ZANG J, TAYLOR P H, MORGAN G, et al. Steep wave and breaking wave impact on offshore wind turbine foundations-ringing revisited [C]//Anon. The 25th International Workshop on Water Waves and Floating Bodies, Harbin, China, May 9-12, 2010. Harbin: University of Bath, 2010. [3] CHAPLIN J R, RAINEY R C T, YEMM R W. Ringing of a vertical cylinder in waves [J]. Journal of fluid mechanics, 1997, 350: 119-147. DOI: 10.1017/S002211209700699X. [4] SCOLAN Y M, LE BOULLUEC M, CHEN X B, et al. Some results from numerical and experimental investigations on the high frequency responses of offshore structures [C]//Anon. International Conference on the Behaviour of Offshore Structures, Delft, Netherlands, Jul 7-10, 1997. Delft: [s. n.], 1997: 127-142. [5] 孙一艳, 柳淑学, 臧军, 等. 聚焦波浪对直立圆柱作用的试验研究 [J]. 大连海事大学学报, 2008, 34(1): 5-9. DOI: 10.16411/j.cnki.issn1006-7736.2008.01.015. SUN Y Y, LIU S X, ZANG J, et al. Experimental study of focused wave on a vertical circular cylinder [J]. Journal of Dalian Maritime University, 2008, 34(1): 5-9. DOI: 10.16411/j.cnki.issn1006-7736.2008.01.015. [6] XU Y Y, LIANG S X, SUN Z C, et al. An experimental comparison of the velocities and energies of focused spilling waves in deep water [J]. Ocean dynamics, 2020, 70(7): 863-877. DOI: 10.1007/s10236-020-01369-1. [7] NIU X Y, MA X Z, MA Y X, et al. Controlled extreme wave generation using an improved focusing method [J]. Applied ocean research, 2020, 95: 102017. DOI: 10.1016/j.apor.2019.102017. [8] SHIN H. Model test of the OC3-hywind floating offshore wind turbine [C]//Anon. The Twenty-First International Offshore and Polar Engineering Conference, Maui, HI, USA, June 19-24, 2011. Maui: The International Society of Offshore and Polar Engineers, 2011: 361-366. [9] AZCONA J, BOUCHOTROUCH F, GONZÁLEZ M, et al. Aerodynamic thrust modelling in wave tank tests of offshore floating wind turbines using a ducted fan [J]. Journal of physics: conference series, 2014, 524: 012089. DOI: 10.1088/1742-6596/524/1/012089. [10] LE BOULLUEC M L, MARTIN A, OHANA J, et al. Tank testing of a new concept of floating offshore wind turbine [C]//Anon. ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, June 9-14, 2013. Nantes: ASME, 2013. DOI: 10.1115/OMAE2013-11577. [11] MORISON J R, JOHNSON J W, SCHAAF S A. The force exerted by surface waves on piles [J]. Journal of petroleum technology, 1950, 2(5): 149-154. DOI: 10.2118/950149-G. [12] CHAU F P, TAYLOR R E. Second-order wave diffraction by a vertical cylinder [J]. Journal of fluid mechanics, 1992, 240: 571-599. DOI: 10.1017/S0022112092000211. [13] RAINEY R C T. A new equation for calculating wave loads on offshore structures [J]. Journal of fluid mechanics, 1989, 204: 295-324. DOI: 10.1017/S002211208900176X. [14] FALTINSEN O M, NEWMAN J N, VINJE T. Nonlinear wave loads on a slender vertical cylinder [J]. Journal of fluid mechanics, 1995, 289: 179-198. DOI: 10.1017/S0022112095001297. [15] MALENICA Š, MOLIN B. Third-harmonic wave diffraction by a vertical cylinder [J]. Journal of fluid mechanics, 1995, 302: 203-229. DOI: 10.1017/S0022112095004071. [16] 竺艳蓉. 海洋工程波浪力学[M]. 天津: 天津大学出版社, 1991: 45. ZHU Y R. Wave mechanics for ocean engineering [M]. Tianjin: Tianjin University Press, 1991: 45. [17] 严磊. 风力发电机支撑体系结构设计研究 [D]. 天津: 天津大学, 2008: 47. YAN L. Research on structure design of wind turbine supporting system [D]. Tianjin: Tianjin University, 2008: 47. [18] 李学兵. 推板式造波机的机械结构设计 [J]. 机械工程与自动化, 2020(3): 91-93. DOI: 10.3969/j.issn.1672-6413.2020.03.036.43. LI X B. Design of mechanical structure for push plate type wave maker [J]. Mechanical engineering & automation, 2020(3): 91-93. DOI: 10.3969/j.issn.1672-6413.2020.03.036.43. [19] TROMANS P S, ANATURK A R, HAGEMEIJER P. A new model for the kinematics of large ocean waves-application as a design wave [C]//Anon. The First International Offshore and Polar Engineering Conference, Edinburgh, The United Kingdom, August 11-16, 1991. Edinburgh: The International Society of Offshore and Polar Engineers, 1991. [20] 柳淑学, 洪起庸. 三维极限波的产生方法及特性 [J]. 海洋学报, 2004, 26(6): 133-142. DOI: 10.3321/j.issn:0253-4193.2004.06.015. LIU S X, HONG Q Y. The generation method of three-dimensional focusing wave and its properties [J]. Acta oceanologica sinica, 2004, 26(6): 133-142. DOI: 10.3321/j.issn:0253-4193.2004.06.015. [21] CHEN Q B, MA Y X, DONG G H, et al. A numerical investigation of interactions between extreme waves and a vertical cylinder [J]. Journal of hydrodynamics, 2020, 32(5): 853-864. DOI: 10.1007/s42241-020-0055-8. [22] DE VOS L, FRIGAARD P, DE ROUCK J. Wave run-up on cylindrical and cone shaped foundations for offshore wind turbines [J]. Coastal engineering, 2007, 54(1): 17-29. DOI: 10.1016/j.coastaleng.2006.08.004.