• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导管架大直径短桩竖向承载力CPTU方法应用分析

王李吉

王李吉. 导管架大直径短桩竖向承载力CPTU方法应用分析[J]. 南方能源建设, 2023, 10(4): 193-199. doi: 10.16516/j.gedi.issn2095-8676.2023.04.020
引用本文: 王李吉. 导管架大直径短桩竖向承载力CPTU方法应用分析[J]. 南方能源建设, 2023, 10(4): 193-199. doi: 10.16516/j.gedi.issn2095-8676.2023.04.020
WANG Liji. Application Analysis of CPTU Method for Jacket Large Diameter Short Pile Axial Bearing Capacity[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(4): 193-199. doi: 10.16516/j.gedi.issn2095-8676.2023.04.020
Citation: WANG Liji. Application Analysis of CPTU Method for Jacket Large Diameter Short Pile Axial Bearing Capacity[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(4): 193-199. doi: 10.16516/j.gedi.issn2095-8676.2023.04.020

导管架大直径短桩竖向承载力CPTU方法应用分析

doi: 10.16516/j.gedi.issn2095-8676.2023.04.020
基金项目: 上海勘测设计研究院科技项目“海上风电大直径短桩导管架基础承载特性研究及优化设计”(2021FD(8)-029)
详细信息
    作者简介:

    王李吉,1989-,男,工程师,硕士,主要从事海上风电基础结构设计工作(e-mail)wangliji@sidri.com

    通讯作者:

    王李吉,(e-mail)wangliji@sidri.com

  • 中图分类号: TK89;TU317

Application Analysis of CPTU Method for Jacket Large Diameter Short Pile Axial Bearing Capacity

  • 摘要:   目的  目前,我国的海上风电工程中,随着工程开发逐步走向深远海,风电机组最常用的基础结构是桩基础,而最常用的上部结构为导管架结构,两者的结合构成了风电机组的基础支撑体系。在一些深水的浅覆盖层地区,大直径导管架基础的应用需求尤其强烈,而下部桩基础的设计直接决定了方案的可行性及结构的安全性,为验证导管架大直径短桩桩基承载力问题,提出采用孔压静力触探试验(CPTU)的计算方法应用。  方法  通过API规范推荐的CPTU计算方法中的UWA-05方法,进行承载力计算,进一步结合广东某风场高应变实测数据与公式计算结果进行对比分析,并对公式本身端阻差异较大的情况进行了参数拟合。  结果  结果表明:采用CPTU方法计算导管架大直径短桩桩身侧阻时,与实测数据拟合度较好。导管架大直径短桩难以形成有效土塞,在采用CPTU方法计算端阻时,建议仅考虑端部环面积。  结论  由此采用CPTU方法计算导管架大直径短桩承载力是可靠的方法,但在使用时候建议结合试桩数据对比验证,为后续深远海风场利用CPTU进行大直径短桩承载力计算应用提供借鉴。
  • 图  1  工程风场导管架大直径桩基施工照片

    Fig.  1  Construction photo of the jacket large-diameter pile foundation of the engineering wind field

    图  2  研究机位的土壤静探锥尖阻力曲线

    Fig.  2  CPT curve of the study position

    图  3  高应变测量桩身设置照片

    Fig.  3  High-strain measurement pile body setting photo

    图  4  高应变数据采集线缆及终端照片

    Fig.  4  High-strain data collection cable and terminal photo

    图  5  桩基侧阻计算与实测比较结果

    Fig.  5  Comparison results of side resistance calculation and measured measurement

    图  6  桩基端阻与实测比较结果

    Fig.  6  Comparison results of pile foundation end resistance and actual measurement

    图  7  桩基端阻与实测比较结果(CPTU方法不考虑土塞)

    Fig.  7  Comparison result of pile foundation (CPTU method without considering soil plug)

    表  1  CPTU方法计算桩基侧阻及端阻

    Tab.  1.   The CPTU method calculates the side resistance and the end resistance of the pile foundation

    序号桩径/m总土阻力/kN桩侧阻力/kN桩端阻力/kN
    1#3.5515622790823654
    2#3.5383992529013109
    3#3.5506713201518656
    4#5.01038713391669955
    下载: 导出CSV

    表  2  现场高应变实测桩基侧阻及端阻分析

    Tab.  2.   Analysis of side resistance and end resistance of pile foundation with high strain measured on site

    序号桩径/m总土阻力/MN桩侧阻力/MN桩端阻力/MN
    13.526.75822.4314.327
    23.526.78222.3234.459
    33.534.51031.6462.864
    45.043.39832.75110.647
    下载: 导出CSV
  • [1] 陈新奎, 戴国亮, 龚维明. 开口钢管桩竖向承载力计算方法 [J]. 水运工程, 2016(3): 137-144. DOI:  10.16233/j.cnki.issn1002-4972.2016.03.025.

    CHEN X K, DAI G L, GONG W M. Calculation method for vertical bearing capacity of open-ended steel pipe piles [J]. Port & waterway engineering, 2016(3): 137-144. DOI:  10.16233/j.cnki.issn1002-4972.2016.03.025.
    [2] 张青海, 李陕锋, 王书稳. 海上风电导管架群桩施工技术的研究应用 [J]. 南方能源建设, 2018, 5(2): 126-132. DOI:  10.16516/j.gedi.issn2095-8676.2018.02.018.

    ZHANG Q H, LI S F, WANG S W. Research and application of jacket multi-pile structure foundation installa-tion for offshore wind power engineering [J]. Southern energy construction, 2018, 5(2): 126-132. DOI:  10.16516/j.gedi.issn2095-8676.2018.02.018.
    [3] 刘展志, 王诗超, 郝为瀚, 等. 大规模海上风电集中送出建设模式研究 [J]. 南方能源建设, 2023, 10(1): 13-20. DOI:  10.16516/j.gedi.issn2095-8676.2023.01.002.

    LIU Z Z, WANG S C, HAO W H, et al. Research on Construction Mode of Large-Scale Offshore Wind Power Centralized Transmission [J]. Southern energy construction, 2023, 10(1): 13-20. DOI:  10.16516/j.gedi.issn2095-8676.2023.01.002.
    [4] 赵向前, 黄松苗, 赵梓杭. 一体化理念在国内海上风电开发建设上的应用探究 [J]. 南方能源建设, 2014, 1(1): 1-6. DOI:  10.16516/j.gedi.issn2095-8676.2014.01.001.

    ZHAO X Q, HUANG S M, ZHAO Z H. Application study of integration concept in domestic offshore wind power construction [J]. Southern energy construction, 2014, 1(1): 1-6. DOI:  10.16516/j.gedi.issn2095-8676.2014.01.001.
    [5] 郑灿, 嵩贺兴, 徐璐, 等. 顶部灌浆导管架桩基在黏土地基中的竖向承载特性研究 [J]. 南方能源建设, 2023, 10(4): 1-10.

    ZHENG C, SONG H X, XU L, et al. Research for vertical bearing characteristics of top grouting jacket pile foundation in clay foundation [J]. Southern energy construction, 2023, 10(4): 1-10.
    [6] 汪华安, 王占华, 郑文成, 等. 广东海上风电岩土勘察船只平台技术研究 [J]. 南方能源建设, 2022, 9(1): 29-33. DOI:  10.16516/j.gedi.issn2095-8676.2022.01.004.

    WANG H A, WANG Z H, ZHENG W C, et al. Research on vessel platform technology for geotechnical investigation of Guangdong offshore wind power [J]. Southern energy construction, 2022, 9(1): 29-33. DOI:  10.16516/j.gedi.issn2095-8676.2022.01.004.
    [7] 汪明元, 王宽君, 周力沛, 等. 基于CPTU的地质参数分析及其在海上风电场的应用 [J]. 南方能源建设, 2018, 5(2): 37-46. DOI:  10.16516/j.gedi.issn2095-8676.2018.02.005.

    WANG M Y, WANG K J, ZHOU L P, et al. Analysis of geological parameters based on CPTU and its application in offshore wind farm [J]. Southern energy construction, 2018, 5(2): 37-46. DOI:  10.16516/j.gedi.issn2095-8676.2018.02.005.
    [8] LUNNE T, ROBERTSON P K, POWELL J J M. Cone penetration testing in geotechnical practice [M]. London: CRC Press, 1997. DOI:  10.1201/9781482295047.
    [9] 刘路路, 蔡国军, 耿功巧, 等. 考虑土塞效应的开口管桩承载力CPTU计算方法 [J]. 东南大学学报(自然科学版), 2020, 50(2): 280-285. DOI:  10.3969/j.issn.1001-0505.2020.02.011.

    LIU L L, CAI G J, GENG G Q, et al. Calculation method for bearing capacity of open-ended pipe pile considering plugging effect of soil based on CPTU [J]. Journal of Southeast University (natural science edition), 2020, 50(2): 280-285. DOI:  10.3969/j.issn.1001-0505.2020.02.011.
    [10] 孟庆林, 郎瑞卿, 霍知亮, 等. 基于欧美标准的静力触探成果应用分析 [J]. 路基工程, 2022(2): 105-109. DOI:  10.13379/j.issn.1003-8825.202104024.

    MENG Q L, LANG R Q, HUO Z L, et al. Application analysis of cone penetration test based on European and American standards [J]. Subgrade engineering, 2022(2): 105-109. DOI:  10.13379/j.issn.1003-8825.202104024.
    [11] 中华人民共和国建设部. 建筑桩基技术规范: JGJ 94—2008 [S]. 北京: 中国建筑工业出版社, 2008.

    The Ministry of Construction of the People's Republic of China. Technical code for building pile foundations: JGJ 94—2008 [S]. Beijing: China Architecture & Building Press, 2008.
    [12] America Petroleum Institute. Geotechnical and foundation design considerations: API RP 2GEO-2014 [S]. [S. l.]: [s. n.], 2014.
    [13] JARDINE R, CHOW F, OVERY R, et al. ICP design methods for driven piles in sands and clays [M]. London: Thomas Telford, 2005.
    [14] LEHANE B M, SCHNEIDER J A A, XU X. A review of design methods for offshore driven piles in siliceous sand [M]. Perth: The University of Western Australia, 2005.
    [15] LEHANE B M, SCHNEIDER J A, XU X. The UWA-05 method for prediction of axial capacity of driven piles in sand [C]//Anon. Proceedings of the International Symposium on Frontiers in Offshore Geotechnics, Perth, Australia, September 19-21, 2005. London: CRC Press, 2005: 683-689.
    [16] CLAUSEN C J F, AAS P M, KARLSRUD K. Bearing capacity of driven piles in sand, the NGI Approach [C]//Anon. Proceedings of the International Symposium on Frontiers in Offshore Geotechnics, Perth, September 19-21, 2005. London: Taylor & Francis, 2005: 677-682.
    [17] FUGRO. Axial pile capacity design method for offshore driven piles in sand [R]. [S.l.]: FUGRO Engineers BV Report No. P1003 to API, 2004.
    [18] LEETSAAR L, KORKIALA-TANTTU L, KURNITSKI J. CPT, CPTu and DCPT methods for predicting the ultimate bearing capacity of cast in situ displacement piles in silty soils [J]. Geotechnical and geological engineering, 2023, 41(2): 631-652. doi:  10.1007/s10706-022-02292-6
    [19] 候晓愉, 戴国亮, 朱文波, 等. 海上风电大直径开口钢管桩竖向承载力CPT/CPTU计算方法 [J]. 东南大学学报(自然科学版), 2022, 52(1): 83-89. DOI:  10.3969/j.issn.1001-0505.2022.01.011.

    HOU X Y, DAI G L, ZHU W B, et al. CPT/CPTU-based calculation methods for vertical bearing capacity of large-diameter open-ended steel pipe piles for offshore wind turbines [J]. Journal of Southeast University (natural science edition), 2022, 52(1): 83-89. DOI:  10.3969/j.issn.1001-0505.2022.01.011.
    [20] 王怀元, 李德新. 高应变动力测桩法在桩基检测中的技术探讨 [J]. 地质与勘探, 1999, 35(6): 91-93. DOI:  10.3969/j.issn.0495-5331.1999.06.026.

    WANG H Y, LI D X. Application of high-strain dynamic pegging to the detecting of pile foundation [J]. Geology and prospecting, 1999, 35(6): 91-93. DOI:  10.3969/j.issn.0495-5331.1999.06.026.
    [21] 张辉宇, 贺瑞, 陈强, 等. 海上风机超大直径单桩竖向抗压承载力理论计算及实测方法对比评价 [J]. 海洋工程, 2022, 40(1): 104-115. DOI:  10.16483/j.issn.1005-9865.2022.01.012.

    ZHANG H Y, HE R, CHEN Q, et al. Comparative evaluation of theoretical method and in situ tests method on vertical compressive bearing capacity of super-large-diameter monopiles for offshore wind turbines [J]. The ocean engineering, 2022, 40(1): 104-115. DOI:  10.16483/j.issn.1005-9865.2022.01.012.
    [22] 中华人民共和国交通运输部. 水运工程桩基设计规范: JTS 147-7—2022 [S]. 北京: 人民交通出版社有限公司, 2022.

    Ministry of Transport of the People's Republic of China. Code for pile foundation design of water transport engineering: JTS 147-7—2022 [S]. Beijing: People's Communications Press Co. , Ltd. , 2022.
  • [1] 马兆荣, 刘振韬, 王金玺, 张友虎.  统一硬化本构在海上风电大直径单桩桩-土分析中的应用 . 南方能源建设, 2024, 11(2): 68-81. doi: 10.16516/j.ceec.2024.2.07
    [2] 王洪庆, 孙伟, 刘东华, 任灏, 汤东升, 方辉.  海上风电大直径单桩自沉与溜桩分析 . 南方能源建设, 2023, 10(1): 64-71. doi: 10.16516/j.gedi.issn2095-8676.2023.01.008
    [3] 刘晋超.  海上大直径单桩基础沉桩施工关键技术研究 . 南方能源建设, 2022, 9(1): 47-51. doi: 10.16516/j.gedi.issn2095-8676.2022.01.007
    [4] 任灏, 方辉, 魏鑫泽.  导管架船撞损伤与剩余强度的结构有限元模拟与评估方法 . 南方能源建设, 2021, 8(3): 26-33. doi: 10.16516/j.gedi.issn2095-8676.2021.03.004
    [5] 张强, 葛畅, 沈晓雷, 尚进.  竹根沙海域单桩基础竖向承载力特性数值模拟研究 . 南方能源建设, 2021, 8(3): 44-50. doi: 10.16516/j.gedi.issn2095-8676.2021.03.006
    [6] 周昳鸣, 闫姝, 姚中原.  海上风机塔架和单桩一体化试验设计方法 . 南方能源建设, 2021, 8(4): 16-25. doi: 10.16516/j.gedi.issn2095-8676.2021.04.003
    [7] 任灏, 马兆荣, 李聪, 徐璐.  海上风电多筒导管架基础湿拖过程稳性控制研究 . 南方能源建设, 2021, 8(S1): 65-69. doi: 10.16516/j.gedi.issn2095-8676.2021.S1.010
    [8] 张力, 黄钺, 王洪庆, 赵学亮, 张景斐.  海上风电嵌岩桩水平承载力特性数值模拟研究 . 南方能源建设, 2021, 8(3): 34-43. doi: 10.16516/j.gedi.issn2095-8676.2021.03.005
    [9] 周林, 施伟, 张松浩, 张礼贤.  破碎波作用下单桩式海上风机水动力学数值分析 . 南方能源建设, 2020, 7(3): 70-80. doi: 10.16516/j.gedi.issn2095-8676.2020.03.009
    [10] 崔永忠, 苏荣, 刘东华, 孙伟.  海上风电大直径单桩自沉深度分析 . 南方能源建设, 2020, 7(1): 40-46. doi: 10.16516/j.gedi.issn2095-8676.2020.01.006
    [11] 彭明祥.  条形浅基础极限承载力的滑移线解 . 南方能源建设, 2019, 6(4): 13-28. doi: 10.16516/j.gedi.issn2095-8676.2019.04.003
    [12] 翟恩地, 张新刚, 李荣富.  海上风电机组塔架基础一体化设计 . 南方能源建设, 2018, 5(2): 1-7. doi: 10.16516/j.gedi.issn2095-8676.2018.02.001
    [13] 刘博, 任灏, 冯奕敏.  海上风电超长钢管桩试桩关键技术浅析 . 南方能源建设, 2018, 5(2): 86-92. doi: 10.16516/j.gedi.issn2095-8676.2018.02.012
    [14] 毕明君, 刘东华, 王洪庆.  海上风电钢管桩水平承载力计算方法研究 . 南方能源建设, 2018, 5(3): 77-82. doi: 10.16516/j.gedi.issn2095-8676.2018.03.012
    [15] 陈珂, 马兆荣.  海上升压站裙桩型导管架基础设计分析 . 南方能源建设, 2018, 5(2): 93-98. doi: 10.16516/j.gedi.issn2095-8676.2018.02.013
    [16] 张青海, 李陕锋, 王书稳.  海上风电导管架群桩施工技术的研究应用 . 南方能源建设, 2018, 5(2): 126-132. doi: 10.16516/j.gedi.issn2095-8676.2018.02.018
    [17] 郑伟文.  桩身加载法静载试验在输电线路工程中的应用 . 南方能源建设, 2017, 4(S1): 120-124. doi: 10.16516/j.gedi.issn2095-8676.2017.S1.023
    [18] 元国凯, 汤东升, 刘晋超, 陈涛, 马兆荣.  海上风电机组基础灌浆技术应用与发展 . 南方能源建设, 2017, 4(1): 10-17. doi: 10.16516/j.gedi.issn2095-8676.2017.01.002
    [19] 刘晋超, 元国凯, 陈涛.  海上风电灌浆连接段静力受力机理研究综述 . 南方能源建设, 2016, 3(S1): 61-67. doi: 10.16516/j.gedi.issn2095-8676.2016.S1.014
    [20] 徐荣彬, 元国凯, 刘晋超, 陈涛.  海上风机导管架基础灌浆连接段受力分析 . 南方能源建设, 2015, 2(3): 80-85. doi: 10.16516/j.gedi.issn2095-8676.2015.03.016
  • 加载中
图(7) / 表 (2)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  37
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 修回日期:  2023-06-28
  • 网络出版日期:  2023-07-25
  • 刊出日期:  2023-07-10

导管架大直径短桩竖向承载力CPTU方法应用分析

doi: 10.16516/j.gedi.issn2095-8676.2023.04.020
    基金项目:  上海勘测设计研究院科技项目“海上风电大直径短桩导管架基础承载特性研究及优化设计”(2021FD(8)-029)
    作者简介:

    王李吉,1989-,男,工程师,硕士,主要从事海上风电基础结构设计工作(e-mail)wangliji@sidri.com

    通讯作者: 王李吉,(e-mail)wangliji@sidri.com
  • 中图分类号: TK89;TU317

摘要:   目的  目前,我国的海上风电工程中,随着工程开发逐步走向深远海,风电机组最常用的基础结构是桩基础,而最常用的上部结构为导管架结构,两者的结合构成了风电机组的基础支撑体系。在一些深水的浅覆盖层地区,大直径导管架基础的应用需求尤其强烈,而下部桩基础的设计直接决定了方案的可行性及结构的安全性,为验证导管架大直径短桩桩基承载力问题,提出采用孔压静力触探试验(CPTU)的计算方法应用。  方法  通过API规范推荐的CPTU计算方法中的UWA-05方法,进行承载力计算,进一步结合广东某风场高应变实测数据与公式计算结果进行对比分析,并对公式本身端阻差异较大的情况进行了参数拟合。  结果  结果表明:采用CPTU方法计算导管架大直径短桩桩身侧阻时,与实测数据拟合度较好。导管架大直径短桩难以形成有效土塞,在采用CPTU方法计算端阻时,建议仅考虑端部环面积。  结论  由此采用CPTU方法计算导管架大直径短桩承载力是可靠的方法,但在使用时候建议结合试桩数据对比验证,为后续深远海风场利用CPTU进行大直径短桩承载力计算应用提供借鉴。

English Abstract

王李吉. 导管架大直径短桩竖向承载力CPTU方法应用分析[J]. 南方能源建设, 2023, 10(4): 193-199. doi: 10.16516/j.gedi.issn2095-8676.2023.04.020
引用本文: 王李吉. 导管架大直径短桩竖向承载力CPTU方法应用分析[J]. 南方能源建设, 2023, 10(4): 193-199. doi: 10.16516/j.gedi.issn2095-8676.2023.04.020
WANG Liji. Application Analysis of CPTU Method for Jacket Large Diameter Short Pile Axial Bearing Capacity[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(4): 193-199. doi: 10.16516/j.gedi.issn2095-8676.2023.04.020
Citation: WANG Liji. Application Analysis of CPTU Method for Jacket Large Diameter Short Pile Axial Bearing Capacity[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(4): 193-199. doi: 10.16516/j.gedi.issn2095-8676.2023.04.020
    • 目前,海上风电工程中,风电机组最常用的基础结构是桩基础,桩体通常采用开口钢管桩。与其他类型的桩基础形式相比,开口钢管桩具有桩身强度高、承载能力大、抗弯性能好的优点,设计参数灵活,厂内预制方便,质量可靠,可根据工程实际要求设计成不同的桩长、桩径和壁厚。开口钢管桩对一般的黏土、砂土等地质具有良好的贯入能力,挤土效应弱,施工效率高[1]

      导管架风机基础是一种桩式基础结构,由钢质空间框架和钢管桩组成,适用于水深较大的海上风电场,且具有结构刚度大、抗弯承载力强、抗疲劳性能好等优点[2]

      随着海上风电建设向深水化、大型化方向发展,导管架风机基础将越来越多地被采用。同时,导管架风机基础也可以降低对大型海工装备的依赖,节约工程造价,降低海上施工风险,减少对海洋环境的污染。因此,导管架风机基础在海上风电项目中具有广阔的应用前景[3-4]

      目前,采用大直径短桩的导管架基础在国内已有所运用,但其目前仍较为接近弹性桩状态,随着海上风电发展,尤其在福建、广东等海域,存在着水深大,荷载大,覆盖层浅的建设条件制约,在这样的条件下大直径短桩导管架存在较大的运用空间。较导管架吸力筒,大直径短桩的导管架基础不依靠负压下沉,对负压贯入难度大的地质条件有较强的适用性,且能确保沉桩到位。通常导管架基础桩径采用3m直径以内小桩,而较常规小桩导管架,大直径短桩导管架适用于覆盖层更浅的地质条件[5]

      海洋岩土勘察中常用的原位测试方法有标准贯入试验(SPT)和孔压静力触探试验(CPTU)。相比于SPT,CPTU可以提高海上风电勘察的效率和质量,降低勘察成本。CPTU可以在动态定位的大型综合勘探船或固定平台上实施,利用海洋勘察窗口期进行连续作业,其贯入速度和深度都高于SPT[6]。CPTU可以减少钻孔取样的数量和深度,降低扰动和污染的风险[7-8]

      采用基于CPTU原位测试的桩基承载力计算方法能够更加快速、准确的评估桩基承载力。通常来说静载试验是单桩竖向极限承载力最为可靠的确定的方法,但静载试验难度大、成本高。实际工程中通常采用高应变数据反分析计算修正系数,然后建立贯入阻力与桩侧摩阻力、桩端阻力的经验关系式。CPTU可以在现场连续、快速、精确测得各土层的贯入阻力指标。采用CPTU测试数据可提高计算单桩竖向承载力的准确性和可靠性,以便可直接供工程设计使用,有利于后续基础结构方案优化设计[9]

    • 广东某海上风电场工程场址位于阳江市阳西县沙扒镇附近海域,水深23~32 m。两期场址面积共计87.9 km2,离岸距离约20 km,整个场址内覆盖层均较浅,岩面为10~50 m埋深。

    • 本论文研究针对的场址A大直径桩基导管架应用台数为12台,场址B大直径桩基导管架应用台数为14台,本研究以其中4台典型机位为目标对象,采用CPTU计算方法、桩基规范计算公式及高应变检测数据,对比桩基抗压承载力,分析理论公式与实际的差异,并形成应用分析结论。工程风场导管架大直径桩基施工实景如图1所示。

      图  1  工程风场导管架大直径桩基施工照片

      Figure 1.  Construction photo of the jacket large-diameter pile foundation of the engineering wind field

    • 研究机位的土壤静探锥尖阻力曲线如图2所示,其中1#~3#机位采用3.5 m桩径,覆盖层深度约50 m,4#机位采用5 m桩径,覆盖层深度约为30 m,整体地质分层为表层为淤泥,以下为黏土与中粗砂的互层,中风化岩面以上为强风化岩及全风化岩。

      图  2  研究机位的土壤静探锥尖阻力曲线

      Figure 2.  CPT curve of the study position

    • 孔压静力触探(CPTU)是一种新型的原位测试技术,它可以连续地测量锥尖阻力qc、侧壁摩阻力fs、孔隙水压力u[10],从而直接确定桩基的承载力。然而,在工程实际应用中,静力触探曲线经常会出现非常陡的“峰”或“谷”,这些异常现象主要与砂层的土性、强度的变化有关。目前,常用的桩基承载力计算方法,如建筑桩基规范法[11]、LCPC 法、欧洲法等,都是在CPTU 出现之前提出的,它们忽略了贯入过程中超孔隙水压力对锥尖阻力和侧壁摩阻力的影响,而且桩侧阻力是由锥尖阻力通过经验系数求得的,没有充分利用CPTU 测得的侧壁摩阻力数据。因此,在应用静力触探进行桩基承载力计算时,原始数据的处理方式及超孔压的产生和消散对桩基承载力的预测影响较大。

      目前,国内外学者提出了诸多基于 CPTU 测试的桩基承载力计算公式,API RP 2GEO 规范[12]《Geotechnical and Foundation Design Considerations》中推荐的4种方法,并对相应公式进行了适当简化,即 ICP-05 方法[13]、UWA-05 方法[14-15]、NGI-05 方法[16]、Fugro-05 [17]方法,被认为是目前在海洋桩基工程中最为可靠的方法[18]

      其中ICP-05及UWA-05在风电工程的大直径桩基承载力计算中应用较多[19]。UWA-05方法整个框架来源于 ICP-05 方法,本质上是对 ICP -05方法的修改和简化,本文以下计算分析采用UWA-05方法进行承载力分析。

      UWA-05方法是由西澳大学(University of Western Australia)提出的一种基于CPTU测试的桩基承载力计算方法,适用于在砂土中施工的开口和闭口钢管桩。该方法综合考虑了以下几个影响桩基承载力的因素:(1)桩安装过程中的土体位移效应;(2)摩阻疲劳;(3)砂-桩界面摩擦角;(4)桩加载过程中径向有效应力的变化;(5)加载方向的影响。其抗压承载力在API规范中采用的简化公式如下:

      $$ {Q}_{{\rm{c}}}={Q}_{{\rm{f}},{\rm{c}}}+{Q}_{{\rm{p}}}={\text{π}} D{\displaystyle \int {f}_{{\rm{c}}}({\textit{z}})}d{\textit{z}}+q{A}_{{\rm{p}}} $$ (1)

      式中:

      Qc ——抗压极限承载力(kN);

      Qf, c ——受压状态下桩侧摩阻力提供的承载力(kN);

      Qp ——桩端承载力(kN);

      fc(z) ——受压状态下桩侧摩阻力,深度z的函数(kPa);

      q ——桩端阻力(kPa);

      Ap ——桩端截面积(m2),考虑整个端面面积。

      对于砂土fc(z)可按下式计算:

      $$ {f}_{{\rm{c}}}({\textit{z}})=0.03{q}_{{\rm{c}}}({\textit{z}}){A}_{\text{r}}^{0.3}{\left[\mathrm{max}\left( {\dfrac{L-{\textit{z}}}{D},2} \right)\right]}^{-0.5}\mathrm{tan}{\delta }_{{\rm{cv}}} $$ (2)
      $$ {A}_{\text{r}}=1-\left( {\dfrac{{D}_{{\rm{i}}}}{D}} \right)^{2} $$ (3)

      式中:

      qc(z)——锥尖阻力(kPa);

      Ar ——桩端环面积与端面积的比值;

      Di ——桩身内径(m);

      D ——桩身直径(m);

      L ——桩入土长度(m);

      z ——计算深度(m);

      ${\delta }_{{\rm{cv}}}$ ——桩土摩擦角(°)。

      对于黏土可按下式计算:

      $$ {f}_{{\rm{c}}}({\textit{z}})={q}_{{\rm{c}}}({\textit{z}})/35 $$ (4)

      桩端阻力q可按下式计算:

      $$ q = {q_{{\rm{c}},{\rm{av}}1.5D}}(0.15 + 0.45{A_{\rm{r}}}) $$ (5)
      $$ {q_{{\rm{c}},{\rm{av}}1.5D}} = \int\limits_{L - 1.5D}^{L + 1.5D} {{q_{\rm{c}}}({\textit{z}})} {\rm{d}}{\textit{z}}/(3D) $$ (6)

      式中:

      ${{q}_{{{\rm{c}},{\rm{av}}1}{.5D}}}$——桩端上下1.5D范围内的平均锥尖阻力(kPa)。

      按以上公式计算,研究1#~4#机位抗压承载力计算统计见表1

      表 1  CPTU方法计算桩基侧阻及端阻

      Table 1.  The CPTU method calculates the side resistance and the end resistance of the pile foundation

      序号桩径/m总土阻力/kN桩侧阻力/kN桩端阻力/kN
      1#3.5515622790823654
      2#3.5383992529013109
      3#3.5506713201518656
      4#5.01038713391669955
    • 高应变动力试桩法是一种通过重锤冲击桩顶,使桩周土发生塑性变形的试验方法。该方法可以在桩顶附近测量力和速度的时程曲线,并利用应力波理论分析桩土体系的相关性质,如单桩极限承载力、土阻力及其分布、桩身完整性等[20]

      工程钢管桩现场高应变测量设置见图3,现场高应变数据采集线缆及设备见图4

      图  3  高应变测量桩身设置照片

      Figure 3.  High-strain measurement pile body setting photo

      图  4  高应变数据采集线缆及终端照片

      Figure 4.  High-strain data collection cable and terminal photo

      实测曲线拟合法是一种基于实测力和速度信号,或上、下行波曲线,计算土阻力及其分布的数值分析方法。该方法首先设定桩身各层土阻力和其他参数,然后运用波动方程进行拟合计算,得到另一条曲线(如速度或力,下行波、上行波曲线),并与相应的实测曲线进行比较。通过不断调整参数,进行迭代计算,直到达到满意的拟合效果为止。最终确定符合实际桩土体系的各种参数值,并获得桩端阻力和桩周阻力分布。

      由于现场1#~3#机位采集为高应变初打数据,4#机位采集数据为10 d后高应变复打数据,考虑到由于复打数据主要反映了沉桩后土体恢复的情况,与设计在位工况承载力更为匹配,因此根据同场址复打(10 d后高应变复打数据)与初打的平均土体恢复系数对比,将1#~3#机位初打数据乘以1.5倍的土体恢复系数,作为本次对比研究的实测依据。

      1#~4#机位钢管桩高应变实测总土阻力、桩侧阻力及桩端阻力统计如表2所示。

      表 2  现场高应变实测桩基侧阻及端阻分析

      Table 2.  Analysis of side resistance and end resistance of pile foundation with high strain measured on site

      序号桩径/m总土阻力/MN桩侧阻力/MN桩端阻力/MN
      13.526.75822.4314.327
      23.526.78222.3234.459
      33.534.51031.6462.864
      45.043.39832.75110.647
    • 考虑到桩基承载力主要分为侧阻及端阻两部分,本研究将侧阻及端阻拆分对比进行研究[21]

      对于侧阻,结合CPTU方法计算结果与高应变实测结果进行了对比,考虑到国内常用水运工程桩基设计规范[22]公式计算桩基承载力,将该方法也纳入了对比。从图5的对比情况可见,在侧阻计算方面,无论CPTU方法计算结果还是桩基规范计算结果,均高于高应变实测值,分析原因主要是因为大直径桩挤土效应相对较弱,侧阻较原小桩有所折减,而目前国内外规范的研究,主要还是基于小直径长桩。两种方法进行对比,总体CPTU与实测数据拟合较好,而桩基规范相对偏离更大。

      图  5  桩基侧阻计算与实测比较结果

      Figure 5.  Comparison results of side resistance calculation and measured measurement

      对于端阻,同样结合CPTU方法计算结果、桩基规范计算结果与高应变实测结果进行了对比,对比结果如图6所示,可以发现,由于大直径短桩在沉桩后基本不形成土塞,导致CPTU方法计算结果、桩基规范计算结果均高于实测值,其中桩基规范计算结果相对差异较小,但从绝对值差异方面分析,直接采用该两种方法计算桩基端阻均不合适。

      图  6  桩基端阻与实测比较结果

      Figure 6.  Comparison results of pile foundation end resistance and actual measurement

      考虑到UWA-05方法中,端阻计算考虑整个桩端面积,在后续拟合中将该值改为桩端环面面积,而q值计算中的Ar为桩端环面积与端面积的比值,将该值调整为1,最终计算结果与高应变实测值拟合结果如图7所示,总体拟合情况较好。由对比结果可知,采用CPTU方法计算桩端阻力时,由于大直径桩很难形成有效土塞,仅考虑桩端环面贡献部分较为合适。

      图  7  桩基端阻与实测比较结果(CPTU方法不考虑土塞)

      Figure 7.  Comparison result of pile foundation (CPTU method without considering soil plug)

      综合考虑以上分析结果,采用CPTU方法计算导管架大直径短桩承载力侧阻可靠性较高,但在计算端阻时,建议结合地区经验关注土塞是否形成,由于导管架大直径短桩难以形成有效土塞,从设计保守考虑建议不考虑土塞。

    • 本文针对导管架大直径短桩承载力CPTU方法开展了应用分析研究,研究形成的主要结论如下:

      1)CPTU作为原位的地勘手段,对土体扰动小,采用CPTU手段进行承载力复核为今后海上风电承载力计算的趋势。

      2)采用CPTU方法中的UWA-05方法计算导管架大直径短桩桩身侧阻时,与实测数据拟合度较好。

      3)导管架大直径短桩难以形成有效土塞,在采用CPTU方法计算端阻时,建议仅考虑端部环面积。

      4)由于本研究仅针对单个风场进行拟合分析,实际在采用CPTU方法进行计算取值时建议结合试桩数据进行分析。

参考文献 (22)

目录

    /

    返回文章
    返回