-
超临界再热型背压机组系统复杂,为确保机组各重要控制回路的正确性,需要结合工艺系统设备配置,对相关系统进行建模,在所建模型的基础上对相应的控制系统进行仿真验证,以保证工程应用时的合理性和高效性。采用模块化建模方法,将涉及到重要控制回路的系统分为主汽轮机系统模型、供汽抽汽及小汽轮机抽汽模型、发电系统模型等,分别进行建模,然后将各个子系统进行联调与校验。
-
汽轮机模型主要包括油动机模型、汽轮机高调门模型、蒸汽容积模型、再热容积模型、转子模型等。除蒸汽容积和再热容积模型外,其他常规模型均不再详述。
高、中压缸的主要动态特性仿真采用蒸汽容积模型。蒸汽容积特性可用一阶惯性环节描述,经过公式推导及拉式变换可得到阀门开度的拉式变换值xsz(s)与机组功率xp(s)之间的传递函数如下:
$$ \frac{{x}_{{\rm{p}}}\left(s\right)}{{x}_{{\rm{sz}}}\left(s\right)}=\frac{1}{1+{T}_{0}s} $$ 式中:
T0——容积时间常数,通常取T0为0.1~0.3 s,汽轮机蒸汽容积模型可按图4模型表示。
再热系统模型主要是容积效应,如图5所示。
再热器的实际物理位置在高排后,再热蒸汽经过中压主汽阀及中压调节阀进入中压缸,因此,再热器的积分反馈来源于中压调阀阀前压力信号,输入为中压调节阀开度。
-
小机抽汽模型是主汽轮机与小汽轮机交接处,需要输出抽汽点压力进入小机模型,同时需要从小机模型接入小机抽汽量作为输入量进入主汽轮机模型,因此小机抽汽模型反映了主汽轮机与小汽轮机的耦合现象,鉴于本工程仿真的主要目标是供热抽汽系统及汽轮机自身的控制,故对于小汽轮机抽汽模型的建立,不考虑汽源切换等问题,仅将其同背压机排汽作为一个整体进行考虑。
中压抽汽与低压抽汽会减小抽汽点后汽轮机级组的流量,对主汽轮机的影响规律与小机抽汽一致,仿真模型也基本一致。同时中压抽汽的压力与中压调节阀及主汽阀的阀门开度存在函数关系,低压抽汽的压力与中压调节阀及旋转隔板的开度存在函数关系。供汽抽汽仿真模型如图6所示。
-
本次仿真试验主要论证抽汽量变化对机组的影响,而背压变化对机组高压缸、旋转隔板前中压缸做功几乎没有影响,对机组功率的影响主要集中在中压缸后半部分:背压变化会引起中压缸后半部分有效焓降变化,从而影响中压缸后半部分做功功率。
经过理论分析及归一化处理,机组的发电功率计算仿真模型如图7所示。由于本研究主要关注的是机组模型对仿真的影响,因此电网模型采用无穷大电网模型进行仿真,忽略发电机组受电网频率和电压等方面的影响。
Operation Control and Simulation of Supercritical Reheat Back Pressure Turbine
-
摘要:
目的 为满足我国工业飞速发展对热负荷的高参数、高品质的需求,充分利用超临界大容量机组效率高、背压式汽轮机发电机组的热能利用率高的优势,需要研制超临界再热型背压机并控制其运行。 方法 文章针对超临界背压机组,在对其热力系统形式和运行模式进行研究的基础上,提出了机组不同运行工况下的控制策略。建立了超临界再热型背压机汽轮机侧的仿真模型。 结果 通过对机组的关键控制策略进行仿真,验证了控制策略的正确性。 结论 为超临界再热型背压机技术的工程示范奠定技术基础,为现役抽凝机组的供热改造提供了借鉴。 Abstract:Introduction In order to meet the needs of the rapid development of China's industry for high parameters and high-quality heat load, make full use of the advantages of the high efficiency of supercritical large-capacity units and the high thermal energy utilization rate of back pressure turbine generator units, it is necessary to develop and control the operation of supercritical reheat back pressure units. Method In this paper, on the basis of the research on the form and operation mode of the thermal system of the supercritical back pressure units, the control strategy under different operation conditions of the unit was proposed, and the simulation model of the turbine side of the supercritical reheat back pressure unit was established. Result The correctness of the control strategy is verified by the simulation of the key control strategy of the unit. Conclusion It lays a technical foundation for the engineering demonstration of supercritical reheat back pressure turbine technology and provides a reference for the heat supply transformation of the existing extraction-condensing units. -
Key words:
- supercritical /
- reheat turbine /
- back pressure turbine /
- thermal system /
- control strategy /
- simulation
-
-
[1] 国家统计局. 中国统计年鉴 [M]. 北京: 中国统计出版社, 2021. National Bureau of Statistics. China statistical yearbook [M]. Beijing: China Statistics Press, 2021. [2] 中国电力企业联合会. 电力行业碳达峰碳中和发展路径研究 [R/OL]. (2021-12-27)[2022-09-04]. https://cec.org.cn/detail/index.html?3-305168. China Electricity Council. Research on the development path of carbon peaking and carbon neutrality in the power industry [R/OL]. (2021-12-27)[2022-09-04]. https://cec.org.cn/detail/index.html?3-305168. [3] 陆树银, 刘浩晨, 顾煜炯, 等. 大型热电联产机组供热改造分析 [J]. 工程热物理学报, 2022, 43(5): 1182-1189. LU S Y, LIU H C, GU Y J, et al. Thermodynamic analysis of heating reformation of large-scale CHP [J]. Journal of engineering thermophysics, 2022, 43(5): 1182-1189. [4] 魏海姣, 鹿院卫, 张灿灿, 等. 燃煤机组灵活性调节技术研究现状及展望 [J]. 华电技术, 2020, 42(4): 57-63. DOI: 10.3969/j.issn.1674-1951.2020.04.009. WEI H J, LU Y W, ZHANG C C, et al. Status and prospect of flexibility regulation technology for coal-fired power plants [J]. Huadian technology, 2020, 42(4): 57-63. DOI: 10.3969/j.issn.1674-1951.2020.04.009. [5] 张文祥, 宋放放, 谢林贵, 等. 新型热电联产汽轮机系统研究 [J]. 东方汽轮机, 2021(3): 23-28. DOI: 10.13808/j.cnki.issn1674-9987.2021.03.006. ZHANG W X, SONG F F, XIE L G, et al. Study on new steam turbine system for cogeneration [J]. Dongfang turbine, 2021(3): 23-28. DOI: 10.13808/j.cnki.issn1674-9987.2021.03.006. [6] 张知足, 张卫义, 刘阿珍, 等. 热电联产应用技术国内外研究现状 [J]. 北京石油化工学院学报, 2020, 28(2): 29-39. DOI: 10.19770/j.cnki.issn.1008-2565.2020.02.004. ZHANG Z Z, ZHANG W Y, LIU A Z, et al. The research status of cogeneration application technology at home and abroad [J]. Journal of Beijing institute of petrochemical technology, 2020, 28(2): 29-39. DOI: 10.19770/j.cnki.issn.1008-2565.2020.02.004. [7] 邹罗明. 超超临界机组邻炉蒸汽加热系统优化研究 [J]. 南方能源建设, 2016, 3(2): 127-130,20. DOI: 10.16516/j.gedi.issn2095-8676.2016.02.024. ZOU L M. Optimization research on adjacent boiler heating system of ultra supercritical unit [J]. Southern energy construction, 2016, 3(2): 127-130,20. DOI: 10.16516/j.gedi.issn2095-8676.2016.02.024. [8] 王东雷, 张鹏, 霍沛强. 采用再热温度630 ℃的1000 MW新一代超超临界二次再热机组可行性研究 [J]. 南方能源建设, 2018, 5(3): 33-41. DOI: 10.16516/j.gedi.issn2095-8676.2018.03.005. WANG D L, ZHANG P, HUO P Q. Feasibility study on 1000 MW new generation ultra-supercritical unit with double re-heating cycles at 630 ℃ [J]. Southern energy construction, 2018, 5(3): 33-41. DOI: 10.16516/j.gedi.issn2095-8676.2018.03.005. [9] 朱晓群. 吸收式热泵在火电厂循环水余热利用中的应用 [J]. 宁夏电力, 2014(3): 56-59. DOI: 10.3969/j.issn.1672-3643.2014.03.013. ZHU X Q. Application of the pump for absorption heat of circulation water residual heat utilization system in coal-fired power plant [J]. Ningxia electric power, 2014(3): 56-59. DOI: 10.3969/j.issn.1672-3643.2014.03.013. [10] 鲁旭东. 呼热350 MW机组热泵供热技术实践 [D]. 保定: 华北电力大学, 2016. DOI: 10.7666/d.D01072252. LU X D. Heating technology practice of heat pump in 350 MW unit for hohhot thermal power plant [D]. Baoding: North China Electric Power University, 2016. DOI: 10.7666/d.D01072252. [11] 张虎男. 350 MW超临界机组高背压供热改造研究及性能分析 [D]. 大连: 大连理工大学, 2017. ZHANG H N. Research and performance analysis of high-back-pressure heating reformation of 350 MW supercritical unit [D]. Dalian: Dalian University of Technology, 2017. [12] 靖长财, 王凤池. 660 MW超临界空冷机组提升供热经济性与灵活性研究 [J]. 能源科技, 2021, 19(1): 46-49. JING C C, WANG F C. Research on improving heating economy and flexibility of 660 MW supercritical air-cooled unit [J]. Energy science and technology, 2021, 19(1): 46-49. [13] 董昊炯, 何新有. 背压式热电联产汽轮机启动运行特点分析 [J]. 热力透平, 2020, 49(4): 252-256. DOI: 10.13707/j.cnki.31-1922/th.2020.04.002. DONG H J, HE X Y. Analysis on start-up and operation characteristics of back pressure combined heat and power steam turbine [J]. Thermal turbine, 2020, 49(4): 252-256. DOI: 10.13707/j.cnki.31-1922/th.2020.04.002. [14] 刘立华, 魏湘, 杨铁峰, 等. 超临界600 MW直接空冷机组双背压供热改造技术 [J]. 热力发电, 2018, 47(12): 87-92. DOI: 10.19666/j.rlfd.201808166. LIU L H, WEI X, YANG T F, et al. Double-backpressure heating flexible reformation technology for a supercritical 600 MW direct air cooling unit [J]. Thermal power generation, 2018, 47(12): 87-92. DOI: 10.19666/j.rlfd.201808166. [15] 车洵, 朱旻昊, 曹勤, 等. 新型节能背压式汽轮机研究 [J]. 热力透平, 2016, 45(1): 33-36. DOI: 10.13707/j.cnki.31-1922/th.2016.01.007. CHE X, ZHU M H, CAO Q, et al. Research on new type of energy-saving steam turbine with back pressure [J]. Thermal turbine, 2016, 45(1): 33-36. DOI: 10.13707/j.cnki.31-1922/th.2016.01.007. [16] 刘强, 段远源. 背压式汽轮机组与有机朗肯循环耦合的热电联产系统 [J]. 中国电机工程学报, 2013, 33(23): 29-36. DOI: 10.13334/j.0258-8013.pcsee.2013.23.014. LIU Q, DUAN Y Y. Cogeneration system comprising back-pressure steam turbine generating unit coupled with organic rankine cycle [J]. Proceedings of the CSEE, 2013, 33(23): 29-36. DOI: 10.13334/j.0258-8013.pcsee.2013.23.014. [17] 胡中强. 背压式汽轮机组与有机朗肯循环耦合的热电联产系统分析及应用 [J]. 上海节能, 2020(11): 1265-1268. DOI: 10.13770/j.cnki.issn2095-705x.2020.11.005. HU Z Q. Analysis and application of cogeneration system with back pressure turbine unit and organic rankine cycle coupling [J]. Shanghai energy conservation, 2020(11): 1265-1268. DOI: 10.13770/j.cnki.issn2095-705x.2020.11.005. [18] 陈先锋. 背压式汽轮机的启动方式分析 [J]. 热力透平, 2018, 47(3): 182-185. DOI: 10.13707/j.cnki.31-1922/th.2018.03.004. CHEN X F. Analysis of start-up mode of back pressure turbine [J]. Thermal turbine, 2018, 47(3): 182-185. DOI: 10.13707/j.cnki.31-1922/th.2018.03.004. [19] 费卓, 范圣波, 朱文凯. 50 MW背压式汽轮机降背压运行实践研究 [J]. 东北电力技术, 2020, 41(3): 53-55,62. DOI: 10.3969/j.issn.1004-7913.2020.03.015. FEI Z, FAN S B, ZHU W K. Research on practice of 50 MW back pressure turbine in back pressure reducing [J]. Northeast electric power technology, 2020, 41(3): 53-55,62. DOI: 10.3969/j.issn.1004-7913.2020.03.015. [20] 陆群. 大型汽轮机抽汽采用背压式汽轮机供热技术经济效益评价 [J]. 电工技术, 2021(23): 185-187. DOI: 10.19768/j.cnki.dgjs.2021.23.061. LU Q. Evaluation of economic benefits of back-pressure steam turbine heating technology for large steam turbine extraction steam [J]. Electric engineering, 2021(23): 185-187. DOI: 10.19768/j.cnki.dgjs.2021.23.061. [21] 薛朝囡, 石慧, 陈霖, 等. 基于背压式汽轮机的宽负荷高效回热系统热经济性分析 [J]. 热力发电, 2018, 47(9): 103-108. DOI: 10.19666/j.rlfd.201801012. XUE Z N, SHI H, CHEN L, et al. Thermo-economic performance analysis for wide-load and high-efficiency regenerative system based on back-pressure steam turbine [J]. Thermal power generation, 2018, 47(9): 103-108. DOI: 10.19666/j.rlfd.201801012. [22] 郑之民. 330 MW机组不同供热方式下的经济性分析 [J]. 发电设备, 2021, 35(2): 145-148. DOI: 10.19806/j.cnki.fdsb.2021.02.013. ZHENG Z M. Economy analysis of a 330 MW unit with different heating modes [J]. Power equipment, 2021, 35(2): 145-148. DOI: 10.19806/j.cnki.fdsb.2021.02.013. [23] 宋萍, 刘晓燕, 唐丽丽, 等. 超临界再热型两级调节工业抽汽背压式汽轮机供热方案研究 [J]. 东方汽轮机, 2020(3): 5-9. DOI: 10.13808/j.cnki.issn1674-9987.2020.03.002. SONG P, LIU X Y, TANG L L, et al. Heating scheme introduction of supercritical two-stage back pressure reheating and coaxial layout steam turbine [J]. Dongfang turbine, 2020(3): 5-9. DOI: 10.13808/j.cnki.issn1674-9987.2020.03.002. [24] 王勇, 马聪, 魏光, 等. 超临界再热型双抽背压式汽轮机高压缸夹层加热系统优化研究 [J]. 东北电力技术, 2021, 42(9): 37-39. DOI: 10.3969/j.issn.1004-7913.2021.09.008. WANG Y, MA C, WEI G, et al. Research on high pressure cylinder interlayer heating system optimization for supercritical reheat double suction back pressure steam turbine [J]. Northeast electric power technology, 2021, 42(9): 37-39. DOI: 10.3969/j.issn.1004-7913.2021.09.008. [25] 罗方, 宋风强, 侯明军, 等. 超临界再热型双抽背压式汽轮机运行策略 [J]. 东方电气评论, 2021, 35(1): 40-44. DOI: 10.3969/j.issn.1001-9006.2021.01.012. LUO F, SONG F Q, HOU M J, et al. The operation strategy of supercritical reheating double extracting back-pressure turbine [J]. Dongfang electric review, 2021, 35(1): 40-44. DOI: 10.3969/j.issn.1001-9006.2021.01.012.