[1] 窦飞, 汪惟源, 杨林, 等. 基于多端柔性直流的电网供电能力提升研究 [J]. 电力与能源, 2017, 38(1): 12-15. DOI:  10.11973/dlyny201701003.

DOU F, WANG W Y, YANG L, et al. Study of power grid supply capability advance based on multi-terminal HVDC [J]. Power & energy, 2017, 38(1): 12-15. DOI:  10.11973/dlyny201701003.
[2] 覃琴, 施浩波, 周勤勇, 等. 兼顾系统强度和直流支撑的500 kV电网分区方法 [J]. 电网技术, 2018, 42(12): 4138-4144. DOI:  10.13335/j.1000-3673.pst.2018.0372.

QIN Q, SHI H B, ZHOU Q Y, et al. Partitioning method for 500 kV power network considering AC system strength and supporting ability to HVDC [J]. Power system technology, 2018, 42(12): 4138-4144. DOI:  10.13335/j.1000-3673.pst.2018.0372.
[3] 刘玉田, 谭冰雪. 大电网恢复适应性分区方法 [J]. 电力系统保护与控制, 2013, 41(2): 49-54. DOI:  10.7667/j.issn.1674-3415.2013.02.008.

LIU Y T, TAN B X. Adaptive partition method for large power system restoration [J]. Power system protection and control, 2013, 41(2): 49-54. DOI:  10.7667/j.issn.1674-3415.2013.02.008.
[4] 汤广福. 基于电压源换流器的高压直流输电技术 [M]. 北京: 中国电力出版社, 2010.

TANG G F. Voltage source converter based HVDC power transmission technology [M]. Beijing: China Electric Power Press, 2010.
[5] 徐政, 肖晃庆, 张哲任, 等. 柔性直流输电系统(2版) [M]. 北京: 机械工业出版社, 2016.

XU Z, XIAO H Q, ZHANG Z R, et al. Voltage source converter based HVDC power transmission system (2nd ed.) [M]. Beijing: China Machine Press, 2016.
[6] 邹常跃, 韦嵘晖, 冯俊杰, 等. 柔性直流输电发展现状及应用前景 [J]. 南方电网技术, 2022, 16(3): 1-7. DOI:  10.13648/j.cnki.issn1674-0629.2022.03.001.

ZOU C Y, WEI R H, FENG J J, et al. Development status and application prospect of VSC-HVDC [J]. Southern power system technology, 2022, 16(3): 1-7. DOI:  10.13648/j.cnki.issn1674-0629.2022.03.001.
[7] 潘尔生, 乐波, 梅念, 等. ±420 kV中国渝鄂直流背靠背联网工程系统设计 [J]. 电力系统自动化, 2021, 45(5): 175-183. DOI:  10.7500/AEPS20200518007.

PAN E S, YUE B, MEI N, et al. System design of ±420 kV Chongqing-Hubei back-to-back HVDC project of China [J]. Automation of electric power systems, 2021, 45(5): 175-183. DOI:  10.7500/AEPS20200518007.
[8] 杨燕, 金楚, 程鑫, 等. 基于大湾区外环的柔性直流互联方案 [J]. 南方电网技术, 2021, 15(3): 15-21. DOI:  10.13648/j.cnki.issn1674-0629.2021.03.003.

YANG Y, JIN C, CHENG X, et al. Flexible DC interconnection scheme based on the outer ring of Guangdong-Hong Kong-Macao Greater Bay Area [J]. Southern power system technology, 2021, 15(3): 15-21. DOI:  10.13648/j.cnki.issn1674-0629.2021.03.003.
[9] 林勇, 陈允鹏, 王志勇, 等. 广东电网目标网架方案论证与建议 [J]. 南方电网技术, 2020, 14(3): 42-48. DOI:  10.13648/j.cnki.issn1674-0629.2020.03.007.

LIN Y, CHEN Y P, WANG Z Y, et al. Demonstration and suggestion on network scheme of Guangdong power system [J]. Southern power system technology, 2020, 14(3): 42-48. DOI:  10.13648/j.cnki.issn1674-0629.2020.03.007.
[10] 汪莹, 葛景, 王蒙, 等. 应用柔性直流输电技术提升大电网弱交流断面输电能力探讨 [J]. 电工技术, 2020(7): 63-65, 68. DOI:  10.19768/j.cnki.dgjs.2020.07.019.

WANG Y, GE J, WANG M, et al. Discussion on application of VSC-HVDC to enhance transmission capacity of weak AC section of large power grid [J]. Electric engineering, 2020(7): 63-65, 68. DOI:  10.19768/j.cnki.dgjs.2020.07.019.
[11] 唐晓骏, 韩民晓, 霍启迪, 等. 匹配不同场景需求的柔性直流应用型式选择 [J]. 电力系统自动化, 2019, 43(16): 183-191. DOI:  10.7500/AEPS20181018008.

TANG X J, HAN M X, HUO Q D, et al. Selection of VSC-HVDC application type matching requirements of different scenarios [J]. Automation of electric power systems, 2019, 43(16): 183-191. DOI:  10.7500/AEPS20181018008.
[12] 闫景信. 轻型直流输电在城市电网中的应用研究 [D]. 北京: 华北电力大学(北京), 2008. DOI:  10.7666/d.y1342807.

YAN J X. Study on the application of HVDC light in city power system [D]. Beijing: North China Electric Power University (Beijing), 2008. DOI:  10.7666/d.y1342807.
[13] 张林山, 杨晴, 崔玉峰, 等. 柔性直流输电在城市电网中的应用 [J]. 云南电力技术, 2010, 38(4): 31-34. DOI:  10.3969/j.issn.1006-7345.2010.04.010.

ZHANG L S, YANG Q, CUI Y F, et al. Application of VSC-HVDC in urban power grid [J]. Yunnan electric power, 2010, 38(4): 31-34. DOI:  10.3969/j.issn.1006-7345.2010.04.010.
[14] 李春叶, 李胜. 柔性直流输电在城市电网中应用的仿真研究 [J]. 电气技术, 2011(1): 1-4,9. DOI:  10.3969/j.issn.1673-3800.2011.01.002.

LI C Y, LI S. Simulation study of application of VSC-HVDC in urban area grid [J]. Electrical engineering, 2011(1): 1-4,9. DOI:  10.3969/j.issn.1673-3800.2011.01.002.
[15] 郭明星, 霍启迪, 赵鹏飞, 等. 柔性直流贡献短路电流影响因素及工程算法误差分析 [J]. 电力系统及其自动化学报, 2021, 33(7): 143-150. DOI:  10.19635/j.cnki.csu-epsa.000644.

GUO M X, HUO Q D, ZHAO P F, et al. Influencing factors of VSC-HVDC contribution short-circuit current and error analysis of engineering calculation method [J]. Proceedings of the CSU-EPSA, 2021, 33(7): 143-150. DOI:  10.19635/j.cnki.csu-epsa.000644.
[16] 唐溢, 李保宏, 曾蕊, 等. 柔性直流对交流系统短路电流影响因素分析 [J]. 电力工程技术, 2022, 41(1): 40-47. DOI:  10.12158/j.2096-3203.2022.01.006.

TANG Y, LI B H, ZENG R, et al. Influence of VSC-HVDC on short-circuit current of AC system [J]. Electric power engineering technology, 2022, 41(1): 40-47. DOI:  10.12158/j.2096-3203.2022.01.006.
[17] 朱琳, 寇龙泽, 范征, 等. 柔性直流并入城市电网后对换流站近区短路电流的影响研究 [J]. 全球能源互联网, 2023, 6(2): 139-148. DOI:  10.19705/j.cnki.issn2096-5125.2023.02.005.

ZHU L, KOU L Z, FAN Z, et al. Study on the influence of VSC-HVDC into urban power grid on short-circuit current of the adjacent area of converter station [J]. Journal of global energy interconnection, 2023, 6(2): 139-148. DOI:  10.19705/j.cnki.issn2096-5125.2023.02.005.
[18] 李探, 赵成勇, 王朝亮, 等. 用于电网黑启动的MMC-HVDC系统换流站启动策略 [J]. 电力系统自动化, 2013, 37(9): 117-122. DOI:  10.7500/AEPS201209099.

LI T, ZHAO C Y, WANG C L, et al. Startup schemes for converter station of MMC-HVDC system applied in grid black start [J]. Automation of electric power systems, 2013, 37(9): 117-122. DOI:  10.7500/AEPS201209099.
[19] 赵睿, 卢斯煜, 王曦, 等. 云南电网和主网利用直流输电系统黑启动的策略研究 [J]. 四川电力技术, 2016, 39(5): 26-31,48. DOI:  10.3969/j.issn.1003-6954.2016.05.006.

ZHAO R, LU S Y, WANG X, et al. Research on black-start schemes using HVDC system in Yunnan power grid and main southern power grid [J]. Sichuan electric power technology, 2016, 39(5): 26-31,48. DOI:  10.3969/j.issn.1003-6954.2016.05.006.
[20] 周东游, 郝正航, 唐文博, 等. 适用于无源网络的模块化多电平柔性直流启动控制研究 [J]. 节能技术, 2021, 39(3): 232-236. DOI:  10.3969/j.issn.1002-6339.2021.03.008.

ZHOU D Y, HAO Z H, TANG W B, et al. Suitable for modular multilevel flexible voltage source converter based on high voltage direct current start control study for passive network [J]. Energy conservation technology, 2021, 39(3): 232-236. DOI:  10.3969/j.issn.1002-6339.2021.03.008.