[1] 封帆. 氢能源的研究现状及展望 [J]. 化学工程与装备, 2022(9): 255-256. DOI:  10.19566/j.cnki.cn35-1285/tq.2022.09.080.

FENG F. Research status and prospects of hydrogen energy [J]. Chemical engineering & equipment, 2022(9): 255-256. DOI:  10.19566/j.cnki.cn35-1285/tq.2022.09.080.
[2] 钟鸣. 中国绿色制氢关键技术发展现状及展望 [J]. 现代化工, 2023, 43(4): 13-17. DOI:  10.16606/j.cnki.issn0253-4320.2023.04.003.

ZHONG M. Development status and prospect of key technologies of green hydrogen production in China [J]. Modern chemical industry, 2023, 43(4): 13-17. DOI:  10.16606/j.cnki.issn0253-4320.2023.04.003.
[3] 仲蕊. 电解水制氢阔步向前 [N]. 中国能源报, 2023-02-20 (019). DOI: 10.28693/n.cnki.nshca.2023.000310.

ZHONG R. Hydrogen production from electrolysis of water is advancing rapidly [N]. China Energy News, 2023-02-20 (019). DOI: 10.28693/n.cnki.nshca.2023.000310.
[4] 张殿朝, 许德洪, 张志强, 等. 水电解制氢设备控制系统升级实例分析 [J]. 天津科技, 2016, 43(8): 59-61. DOI:  10.3969/j.issn.1006-8945.2016.08.019.

ZHANG D C, XU D H, ZHANG Z Q, et al. A case study of control system upgrade for water electrolysis hydrogen production equipment [J]. Tianjin science & technology, 2016, 43(8): 59-61. DOI:  10.3969/j.issn.1006-8945.2016.08.019.
[5] 赵运林, 曹田田, 张成晓, 等. 集中式制氢技术进展及成本分析 [J]. 石油炼制与化工, 2022, 53(10): 122-126.

ZHAO Y L, CAO T T, ZHANG C X, et al. Progress and cost analysis of centralized hydrogen production technology [J]. Petroleum refining and chemical industry, 2022, 53(10): 122-126.
[6] 张唯怡, 张议洁, 王进伟, 等. 电解水制氢技术及大电流析氧反应研究与展望 [J]. 工程科学学报, 2023, 45(7): 1057-1070. DOI:  10.13374/j.issn2095-9389.2022.09.20.005.

ZHANG W Y, ZHANG Y J, WANG J W, et al. Research and perspectives on electrocatalytic water splitting and large current density oxygen evolution reaction [J]. Chinese journal of engineering, 2023, 45(7): 1057-1070. DOI:  10.13374/j.issn2095-9389.2022.09.20.005.
[7] 孟娇娇, 胡平, 崔杰. 基于PLC的PEM电解水制氢系统设计 [J]. 河南科技, 2023, 42(1): 7-11. DOI:  10.19968/j.cnki.hnkj.1003-5168.2023.01.001.

MENG J J, HU P, CUI J. Design of PEM water-electrolytic hydrogen production system based on PLC [J]. Henan science and technology, 2023, 42(1): 7-11. DOI:  10.19968/j.cnki.hnkj.1003-5168.2023.01.001.
[8] 吉旭, 周步祥, 贺革, 等. 大规模可再生能源电解水制氢合成氨关键技术与应用研究进展 [J]. 工程科学与技术, 2022, 54(5): 1-11. DOI:  10.15961/j.jsuese.202200660.

JI X, ZHOU B X, HE G, et al. Research review of the key technology and application of large-scale water electrolysis powered by renewable energy to hydrogen and ammonia production [J]. Advanced engineering sciences, 2022, 54(5): 1-11. DOI:  10.15961/j.jsuese.202200660.
[9] 程丽娟, 何强龙, 孙天龙, 等. 基于电解槽电流控制的风电制氢系统控制策略 [J]. 轻工科技, 2021, 37(5): 48-49.

CHENG L J, HE Q L, SUN T L, et al. Control strategy for wind power hydrogen production system based on electrolytic cell current control [J]. Light industry science and technology, 2021, 37(5): 48-49.
[10] 程丽娟, 徐立军, 胡兵, 等. 并网型风电盐水制氢系统的控制 [J]. 工业仪表与自动化装置, 2020(3): 29-33, 78.

CHENG L J, XU L J, HU B, et al. Control of grid-connected wind power brine hydrogen production system [J]. Industrial instrumentation and automation equipment, 2020(3): 29-33, 78.
[11] 周文利, 巨秉中, 张伟, 等. 水电解制氢设备自动冷却水循环装置开发 [J]. 青海科技, 2019, 26(2): 85-88.

ZHOU W L, JU B Z, ZHANG W, et al. Development of automatic cooling water circulation device for water electrolysis hydrogen production equipment [J]. Qinghai science and technology, 2019, 26(2): 85-88.
[12] 曹坤, 艾永乐, 李港星. 基于内模控制的逆变器并离网无缝切换策略研究 [J]. 电子测量技术, 2022, 45(23): 19-24. DOI:  10.19651/j.cnki.emt.2209923.

CAO K, AI Y L, LI G X. Research on seamless switching strategy of inverter between grid-connected and off-grid based on internal model control [J]. Electronic measurement technology, 2022, 45(23): 19-24. DOI:  10.19651/j.cnki.emt.2209923.
[13] 陈昊闻, 陈俐, 刘峰宇. 双离合器自动变速器换挡过程的内模控制 [J]. 汽车工程, 2020, 42(4): 477-483. DOI:  10.19562/j.chinasae.qcgc.2020.04.009.

CHEN H W, CHEN L, LIU F Y. Internal model control during shifting of dual clutch automatic transmission [J]. Automotive engineering, 2020, 42(4): 477-483. DOI:  10.19562/j.chinasae.qcgc.2020.04.009.
[14] 张磊, 李健. 内模控制在外挂式SCR脱硝平台中的应用 [J]. 中国科技信息, 2021(23): 105-109.

ZHANG L, LI J. Application of internal model control in external SCR denitrification platform [J]. China science and technology information, 2021(23): 105-109.
[15] 刘琪, 黄贞贞. 模糊内模控制在磨矿系统中的应用 [J]. 科学技术与工程, 2012, 12(29): 7674-7676. doi:  10.3969/j.issn.1671-1815.2012.29.037

LIU Q, HUANG Z Z. Application of fuzzy internal model control in grinding systems [J]. Science technology and engineering, 2012, 12(29): 7674-7676. doi:  10.3969/j.issn.1671-1815.2012.29.037
[16] 张新法, 赵志诚. 一种基于遗传算法的模糊内模控制方法 [J]. 工业控制计算机, 2011, 24(6): 82-84. doi:  10.3969/j.issn.1001-182X.2011.06.040

ZHANG X F, ZHAO Z C. A fuzzy internal model control algorithm based on genetic algorithm [J]. Industrial control computer, 2011, 24(6): 82-84. doi:  10.3969/j.issn.1001-182X.2011.06.040
[17] 余哲, 王志国, 刘飞. 基于遗传算法的模糊内模PID控制器优化 [J]. 化工自动化及仪表, 2020, 47(4): 294-298, 321.

YU Z, WANG Z G, LIU F. Optimization of fuzzy internal model PID controller based on genetic algorithm [J]. Chemical automation and instrumentation, 2020, 47(4): 294-298, 321.
[18] 李明辉, 杨星奎, 云卫涛, 等. 基于模糊内模控制的汽轮机调速系统研究 [J]. 汽轮机技术, 2018, 60(3): 172-174, 232.

LI M H, YANG X K, YUN W T, et al. Research on steam turbine governing system based on fuzzy internal model control [J]. Turbine technology, 2018, 60(3): 172-174, 232.
[19] 童金钟, 石成江, 褚义彬, 等. 基于PLC的水电解制氢装置温度控制 [J]. 机械制造与自动化, 2015, 44(6): 176-178. DOI:  10.19344/j.cnki.issn1671-5276.2015.06.051.

TONG J Z, SHI C J, CHU Y B, et al. Temperature control of hydrogen equipment based on PLC [J]. Machine building & automation, 2015, 44(6): 176-178. DOI:  10.19344/j.cnki.issn1671-5276.2015.06.051.
[20] 雷秋晓, 史义存, 苏子义, 等. 制氢技术的现状及发展前景 [J]. 山东化工, 2020, 49(8): 72-75. DOI:  10.19319/j.cnki.issn.1008-021x.2020.08.024.

LEI Q X, SHI Y C, SU Z Y, et al. Status and development prospect of hydrogen production technology [J]. Shandong chemical industry, 2020, 49(8): 72-75. DOI:  10.19319/j.cnki.issn.1008-021x.2020.08.024.
[21] 孟凡, 张惠铃, 姬姗姗, 等. 高效电解水制氢发展现状与技术优化策略 [J]. 黑龙江大学自然科学学报, 2021, 38(6): 702-713. DOI:  10.13482/j.issn1001-7011.2021.10.180.

MENG F, ZHANG H L, JI S S, et al. Progress and technology strategies of hydrogen evolution reaction by high efficiency water electrolysis [J]. Journal of natural science of Heilongjiang university, 2021, 38(6): 702-713. DOI:  10.13482/j.issn1001-7011.2021.10.180.
[22] 俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议 [J]. 中国工程科学, 2021, 23(2): 146-152.

YU H M, SHAO Z G, HOU M, et al. Hydrogen production by water electrolysis: progress and suggestions [J]. Strategic study of CAE, 2021, 23(2): 146-152.
[23] 郑之杰, 黄静思, 黄元生. 基于模型预测控制的水电制氢系统优化调度研究 [J]. 电力科学与工程, 2022, 38(7): 25-33.

ZHENG Z J, HUANG J S, HUANG Y S. Optimal scheduling of hydro-electricity hydrogen production system based on model predictive control [J]. Electric power science and engineering, 2022, 38(7): 25-33.
[24] 李雨欣, 张桐. 基于西门子S7-400H系统架构变压吸附制氢控制系统设计 [J]. 电子测试, 2022(16): 32-34. DOI:  10.16520/j.cnki.1000-8519.2022.16.039.

LI Y X, ZHANG T. Pressure swing adsorption hydrogen production control system design based on Siemens S7-400H system architecture [J]. Electronic test, 2022(16): 32-34. DOI:  10.16520/j.cnki.1000-8519.2022.16.039.
[25] 李静. 电解水制氢的影响因素研究 [D]. 北京: 北京建筑大学, 2020. DOI: 10.26943/d.cnki.gbjzc.2020.000462.

LI J. Study on influencing factors of hydrogen production by electrolyzing water [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020. DOI: 10.26943/d.cnki.gbjzc.2020.000462.
[26] 陶玉昆, 杨飞飞, 和萍, 等. 基于内模理论的电压源变换器直接功率控制 [J]. 计算机仿真, 2021, 38(5): 80-84. doi:  10.3969/j.issn.1006-9348.2021.05.017

TAO Y K, YANG F F, HE P, et al. Internal model theory based direct power control for voltage source converters [J]. Computer simulation, 2021, 38(5): 80-84. doi:  10.3969/j.issn.1006-9348.2021.05.017
[27] 邢胜林, 瞿佳琪. 基于模糊内模控制的锅炉汽包水位控制仿真研究 [J]. 电工技术, 2022(18): 1-3. DOI:  10.19768/j.cnki.dgjs.2022.18.001.

XING S L, QU J Q. Simulation research on boiler water level control based on fuzzy internal model control [J]. Electric engineering, 2022(18): 1-3. DOI:  10.19768/j.cnki.dgjs.2022.18.001.
[28] 侯美琳. 机电超环面驱动系统内模控制研究 [D]. 天津: 天津工业大学, 2021. DOI: 10.27357/d.cnki.gtgyu.2021.000207.

HOU M L. Research on internal model control of electromechanical toroidal drive system [D]. Tianjin: Tiangong University, 2021. DOI: 10.27357/d.cnki.gtgyu.2021.000207.
[29] 尚建楠. 基于PLC的水电解制氢装置温度控制研究 [J]. 机械管理开发, 2022, 37(5): 245-246. DOI:  10.16525/j.cnki.cn14-1134/th.2022.05.105.

SHANG J N. PLC-based temperature control research of water electrolysis hydrogen production plant [J]. Mechanical management and development, 2022, 37(5): 245-246. DOI:  10.16525/j.cnki.cn14-1134/th.2022.05.105.
[30] 刘锁清, 彭伟娟, 李军红, 等. 模糊自适应内模控制在超临界给水控制中的应用 [J]. 自动化技术与应用, 2017, 36(10): 38-40, 52. doi:  10.3969/j.issn.1003-7241.2017.10.009

LIU S Q, PENG W J, LI J H, et al. Application of fuzzy adaptive internal model control on feed water control for supercritical unit [J]. Techniques of automation and applications, 2017, 36(10): 38-40, 52. doi:  10.3969/j.issn.1003-7241.2017.10.009
[31] 李洪亮, 何同祥, 刘会赏. 模糊内模控制在再热汽温中的应用研究 [J]. 仪器仪表用户, 2010, 17(4): 33-35. DOI:  10.3969/j.issn.1671-1041.2010.04.018.

LI H L, HE T X, LIU H S. Research on the application of fuzzy internal model control in reheat steam temperature [J]. Instrument user, 2010, 17(4): 33-35. DOI:  10.3969/j.issn.1671-1041.2010.04.018.