[1] 薛士敏, 齐金龙, 刘冲. 直流微网保护综述 [J]. 中国电机工程学报, 2016, 36(13): 3404-3412. DOI:  10.13334/j.0258-8013.pcsee.160148.

XUE S M, QI J L, LIU C. A research review of protection for DC microgrid [J]. Proceedings of the CSEE, 2016, 36(13): 3404-3412. DOI:  10.13334/j.0258-8013.pcsee.160148.
[2] 薛士敏, 齐金龙, 刘冲, 等. 直流微网接地方式及新型保护原理 [J]. 电网技术, 2018, 42(1): 48-55. DOI:  10.13335/j.1000-3673.pst.2017.1409.

XUE S M, QI J L, LIU C, et al. A research of grounding mode and new protection principle for DC microgrids [J]. Power system technology, 2018, 42(1): 48-55. DOI:  10.13335/j.1000-3673.pst.2017.1409.
[3] 张宇涵, 杜贵平, 雷雁雄, 等. 直流微网混合储能系统控制策略现状及展望 [J]. 电力系统保护与控制, 2021, 49(3): 177-187. DOI:  10.19783/j.cnki.pspc.200461.

ZHANG Y H, DU G P, LEI Y X, et al. Current status and prospects of control strategy for a DC micro grid hybrid energy storage system [J]. Power system protection and control, 2021, 49(3): 177-187. DOI:  10.19783/j.cnki.pspc.200461.
[4]

DRAGIČEVIĆ T, LU X N, VASQUEZ J C, et al. DC microgrids-part Ⅱ: a review of power architectures, applications, and standardization issues [J]. IEEE transactions on power electronics, 2016, 31(5): 3528-3549. DOI:  10.1109/TPEL.2015.2464277.
[5]

MONADI M, ZAMANI M A, IGNACIO CANDELA J, et al. Protection of AC and DC distribution systems embedding distributed energy resources: a comparative review and analysis [J]. Renewable and sustainable energy reviews, 2015, 51: 1578-1593. DOI:  10.1016/j.rser.2015.07.013.
[6] 于涛. 基于分布式电源的微电网控制策略研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020. DOI: 10.27060/d.cnki.ghbcu.2020.001247.

YU T. Research on microgrid control strategy based on distributed power supply [D]. Harbin: Harbin Engineering University, 2020. DOI: 10.27060/d.cnki.ghbcu.2020.001247.
[7]

LIANG B M, KANG L, ZHANG Z Y, et al. Simulation analysis of grid-connected AC/DC hybrid microgrid [C]//2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, May 31-June 2, 2018. New York, USA: IEEE, 2018: 969-974. DOI: 10.1109/ICIEA.2018.8397852.
[8] 薛士敏, 黄仁乐, 高峰, 等. 基于暂态电流突变量的直流配电系统快速纵联保护新原理 [J]. 供用电, 2016, 33(8): 37-44. DOI:  10.19421/j.cnki.1006-6357.2016.08.007.

XUE S M, HUANG R L, GAO F, et al. High-speed pilot protection principle for DC distribution system based on the difference of transient currents [J]. Distribution & utilization, 2016, 33(8): 37-44. DOI:  10.19421/j.cnki.1006-6357.2016.08.007.
[9] 焦皎, 孟润泉, 任春光, 等. 交直流微电网AC/DC双向功率变换器控制策略 [J]. 电力系统保护与控制, 2020, 48(16): 84-92. DOI:  10.19783/j.cnki.pspc.191124.

JIAO J, MENG R Q, REN C G, et al. Bidirectional AC/DC interlinking converter control strategy for an AC/DC microgrid [J]. Power system protection and control, 2020, 48(16): 84-92. DOI:  10.19783/j.cnki.pspc.191124.
[10] 周钰, 张浩, 陈锐, 等. 直流微电网控制保护策略研究 [J]. 南方能源建设, 2020, 7(4): 61-66. DOI:  10.16516/j.gedi.issn2095-8676.2020.04.009.

ZHOU Y, ZHANG H, CHEN R, et al. Research on strategy of DC micro-grid control and protection [J]. Southern energy construction, 2020, 7(4): 61-66. DOI:  10.16516/j.gedi.issn2095-8676.2020.04.009.
[11] 王灿, 杜船, 徐杰雄. 中高压直流断路器拓扑综述 [J]. 电力系统自动化, 2020, 44(9): 187-199. DOI:  10.7500/AEPS20191021006.

WANG C, DU C, XU J X. Review of topologies for medium-and high-voltage DC circuit breaker [J]. Automation of electric power systems, 2020, 44(9): 187-199. DOI:  10.7500/AEPS20191021006.
[12]

FRANCK C M. HVDC circuit breakers: a review identifying future research needs [J]. IEEE transactions on power delivery, 2011, 26(2): 998-1007. DOI:  10.1109/TPWRD.2010.2095889.
[13] 杨勇, 王文杰, 刘亚萍, 等. 基于大规模风、光并网外送需求的高压直流混合式直流断路器研究 [J]. 可再生能源, 2021, 39(2): 237-244. DOI:  10.3969/j.issn.1671-5292.2021.02.015.

YANG Y, WANG W J, LIU Y P, et al. Hybrid HVDC breaker for HVDC based wind and photovoltaic power integration system [J]. Renewable energy resources, 2021, 39(2): 237-244. DOI:  10.3969/j.issn.1671-5292.2021.02.015.
[14]

TAN R, WANG Y, ZHANG S. Coordination scheme of SFCL and SMES in the DC microgrid for fault current limiting and voltage stability [C]//2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, October 16-18, 2020. New York, USA: IEEE, 2020: 1-2. DOI: 10.1109/ASEMD49065.2020.9276114.
[15]

XUE S M, GAO F, SUN W P, et al. Protection principle for a DC distribution system with a resistive superconductive fault current limiter [J]. Energies, 2015, 8(6): 4839-4852. DOI:  10.3390/en8064839.
[16] 李斌, 何佳伟. 柔性直流配电系统故障分析及限流方法 [J]. 中国电机工程学报, 2015, 35(12): 3026-3036. DOI:  10.13334/j.0258-8013.pcsee.2015.12.013.

LI B, HE J W. DC fault analysis and current limiting technique for VSC-based DC distribution system [J]. Proceedings of the CSEE, 2015, 35(12): 3026-3036. DOI:  10.13334/j.0258-8013.pcsee.2015.12.013.
[17] 年珩, 孔亮. 直流微电网故障保护技术研究综述 [J]. 高电压技术, 2020, 46(7): 2241-2254. DOI:  10.13336/j.1003-6520.hve.20200472.

NIAN H, KONG L. Review on fault protection technologies of DC microgrid [J]. High voltage engineering, 2020, 46(7): 2241-2254. DOI:  10.13336/j.1003-6520.hve.20200472.
[18]

MARTÍNEZ-PARRALES R, FUERTE-ESQUIVEL C R, ALCAIDE-MORENO B A, et al. A VSC-based model for power flow assessment of multi-terminal VSC-HVDC transmission systems [J]. Journal of modern power systems and clean energy, 2021, 9(6): 1363-1374. DOI:  10.35833/MPCE.2021.000104.
[19] 钟庆, 马新华, 王钢, 等. 电压源型换流器稳态等值电路模型 [J]. 高电压技术, 2014, 40(8): 2485-2489. DOI:  10.13336/j.1003-6520.hve.2014.08.032.

ZHONG Q, MA X H, WANG G, et al. Static equivalent circuit models of voltage source converter [J]. High voltage engineering, 2014, 40(8): 2485-2489. DOI:  10.13336/j.1003-6520.hve.2014.08.032.
[20] 赵雨童, 高飞, 张博深. 基于交流电流下垂特性控制的VSC建模和稳定性分析 [J]. 电力自动化设备, 2021, 41(5): 50-55. DOI:  10.16081/j.epae.202105034.

ZHAO Y T, GAO F, ZHANG B S. Modeling and stability analysis of VSC with droop characteristic based on AC current [J]. Electric power automation equipment, 2021, 41(5): 50-55. DOI:  10.16081/j.epae.202105034.
[21] 魏承志, 李明, 李春华, 等. 基于两电平电压源型换流器的直流微网交直流侧接地方式 [J]. 南方电网技术, 2021, 15(2): 116-123. DOI:  10.13648/j.cnki.issn1674-0629.2021.02.015.

WEI C Z, LI M, LI C H, et al. Grounding modes at AC and DC side of DC microgrid with two-level voltage source converters [J]. Southern power system technology, 2021, 15(2): 116-123. DOI:  10.13648/j.cnki.issn1674-0629.2021.02.015.