[1] 付蔷. 促进风电消纳的火电灵活性改造深度及经济效益研究[D]. 北京: 北京交通大学, 2018.

FU Q. Study on depth and economic benefits of thermal power flexibility transformation to promote wind power consumption[D]. Beijing: Beijing Jiaotong University, 2018.
[2] 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究 [J]. 中国电机工程学报, 2017, 37(1): 1-8. DOI:  10.13334/j.0258-8013.pcsee.162555.

SHU Y B, ZHANG Z G, GUO J B, et al. Study on key factors and solution of renewable energy accommodation [J]. Proceedings of the CSEE, 2017, 37(1): 1-8. DOI:  10.13334/j.0258-8013.pcsee.162555.
[3] 国家发展改革委, 国家能源局. 关于印发《“十四五”现代能源体系规划》的通知 [R]. 北京: 国家发展改革委, 国家能源局, 2022.

National Development and Reform Commission, National Energy Administration. Notice on printing and distributing the "14th five year plan" for modern energy system [R]. Beijing: National Development and Reform Commission, National Energy Administration, 2022.
[4] 刘刚. 火电机组灵活性改造技术路线研究 [J]. 电站系统工程, 2018, 34(1): 12-15.

LIU G. Analysis on technical route of flexible transformation of thermal power units [J]. Power System Engineering, 2018, 34(1): 12-15.
[5] 王伟, 徐婧, 赵翔, 等. 中国煤电机组调峰运行现状分析 [J]. 南方能源建设, 2017, 4(1): 18-24. DOI:  10.16516/j.gedi.issn2095-8676.2017.01.003.

WANG W, XU J, ZHAO X, et al. Analysis on peak load regulation status quo for coal-fired power plants in China [J]. Southern Energy Construction, 2017, 4(1): 18-24. DOI:  10.16516/j.gedi.issn2095-8676.2017.01.003.
[6] 裴顺, 杨桂. 燃煤机组低负荷工况下安全稳定运行研究 [J]. 南方能源建设, 2018, 5(增刊1): 19-24. DOI:  10.16516/j.gedi.issn2095-8676.2018.S1.004.

PEI S, YANG G. Research on safe and stable operation under lower load condition for coal-fired power plant [J]. Southern Energy Construction, 2018, 5(Supp. 1): 19-24. DOI:  10.16516/j.gedi.issn2095-8676.2018.S1.004.
[7] 李伟, 蔡勇, 张晓磊, 等. 深度调峰工况锅炉主要辅机运行安全性分析 [J]. 广东电力, 2019, 32(11): 63-69. DOI:  10.3969/j.issn.1007-290X.2019.011.008.

LI W, CAI Y, ZHANG X L, et al. Analysis of operation safety of main auxiliaries of boilers under deep peak shaving [J]. Guangdong Electric Power, 2019, 32(11): 63-69. DOI:  10.3969/j.issn.1007-290X.2019.011.008.
[8] 侯玉婷, 李晓博, 刘畅, 等. 火电机组灵活性改造形势及技术应用 [J]. 热力发电, 2018, 47(5): 8-13. DOI:  10.19666/j.rlfd.201803043.

HOU Y T, LI X B, LIU C, et al. Flexibility reform situation and technical application of thermal power units [J]. Thermal Power Generation, 2018, 47(5): 8-13. DOI:  10.19666/j.rlfd.201803043.
[9] 龚胜, 石奇光, 冒玉晨, 等. 我国火电机组灵活性现状与技术发展 [J]. 应用能源技术, 2017(5): 1-6. DOI:  10.3969/j.issn.1009-3230.2017.05.001.

GONG S, SHI Q G, MAO Y C, et al. Present situation and development of flexible technology of thermal power units in China [J]. Applied Energy Technology, 2017(5): 1-6. DOI:  10.3969/j.issn.1009-3230.2017.05.001.
[10] 宋民航, 黄云, 黄骞, 等. 旋流煤粉燃烧器低负荷稳燃技术探讨 [J]. 中国电机工程学报, 2021, 41(13): 4552-4565. DOI:  10.13334/j.0258-8013.pcsee.210311.

SONG M H, HUANG Y, HUANG Q, et al. Discussion on low-load stable combustion technology of swirl pulverized-coal burner [J]. Proceedings of the CSEE, 2021, 41(13): 4552-4565. DOI:  10.13334/j.0258-8013.pcsee.210311.
[11] 马达夫, 何翔, 吕为智, 等. 660 MW超临界W火焰锅炉低负荷稳燃特性研究 [J]. 工程热物理学报, 2022, 43(1): 259-266.

MA D F, HE X, LÜ W Z, et al. Investigations of combustion stability in a 660 MW supercritical W-flame boiler under low load [J]. Journal of Engineering Thermophysics, 2022, 43(1): 259-266.
[12] 罗聪, 刘鑫屏. 深度调峰工况下锅炉过量空气系数对炉内温度影响的分析 [J]. 南方能源建设, 2019, 6(3): 81-86. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.014.

LUO C, LIU X P. Analysis of optimal excess air ratio under ultra low load conditions [J]. Southern Energy Construction, 2019, 6(3): 81-86. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.014.
[13] 孙海峰, 王兆辉, 王建峰, 等. 600 MW超临界机组深度调峰安全可靠运行解析 [J]. 华电技术, 2020, 42(12): 94-100. DOI:  10.3969/j.issn.1674-1951.2020.12.016.

SUN H F, WANG Z H, WANG J F, et al. Analysis on safety and reliability of 600 MW supercritical units' deep peak regulation [J]. Huadian Technology, 2020, 42(12): 94-100. DOI:  10.3969/j.issn.1674-1951.2020.12.016.
[14] 王立, 王燕晋, 李战国, 等. 火力发电机组深度调峰试验及优化 [J]. 发电设备, 2019, 33(2): 133-137. DOI:  10.3969/j.issn.1671-086X.2019.02.014.

WANG L, WANG Y J, LI Z G, et al. Deep peak shaving tests and optimization for thermal power units [J]. Power Equipment, 2019, 33(2): 133-137. DOI:  10.3969/j.issn.1671-086X.2019.02.014.
[15] 章斐然, 周克毅, 徐奇, 等. 燃煤机组低负荷运行SCR烟气脱硝系统应对措施 [J]. 热力发电, 2016, 45(7): 78-83. DOI:  10.3969/j.issn.1002-3364.2016.07.078.

ZHANG F R, ZHOU K Y, XU Q, et al. Countermeasures for SCR denitration system of coal-fired unit during low-load operation [J]. Thermal Power Generation, 2016, 45(7): 78-83. DOI:  10.3969/j.issn.1002-3364.2016.07.078.
[16] 杨青山, 廖永进. 降低SCR脱硝装置最低投运负荷的策略研究 [J]. 中国电力, 2014, 47(9): 153-155. DOI:  10.11930/j.issn.1004-9649.2014.9.153.2.

YANG Q S, LIAO Y J. The strategy on reduction of SCR minimum operation load [J]. Electric Power, 2014, 47(9): 153-155. DOI:  10.11930/j.issn.1004-9649.2014.9.153.2.