[1] 潘英. 能源战略下的能源电力发展方向和碳排放问题 [J]. 南方能源建设, 2019, 6(3): 32-39.

PANY. Energy power development direction and low carbon emission under energy strategy [J]. Southern Energy Construction, 2019, 6(3): 32-39.
[2]

FUJISHIMAA, HONDAK. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38.
[3]

WALTERM G, WARRENE L, MCKONEJ R, et al. Solar water splitting cells [J]. Chemical Reviews, 2010, 110(11): 6446-6473.
[4]

WANGQ, DOMENK. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies [J]. Chemical Reviews, 2020, 120(2): 919-985.
[5]

GELLEA, JINT, DE LA GARZAL, et al. Applications of plasmon-enhanced nanocatalysis to organic transformations [J]. Chemical Reviews, 2020, 120(2): 986-1041.
[6]

LINICS, CHRISTOPHERP, INGRAMD B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy [J]. Nature Materials, 2011, 10(12): 911-921.
[7]

THOMANNI, PINAUDB A, CHENZ, et al. Plasmon enhanced solar-to-fuel energy conversion [J]. Nano Letters, 2011, 11(8): 3440-3446.
[8]

SUF, WANGT, LVR, et al. Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting [J]. Nanoscale, 2013, 5(19): 9001-9009.
[9]

PUY C, WANGG, CHANGK D, et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting [J]. Nano Letters, 2013, 13(8): 3817-3823.
[10]

INGRAMD B, LINICS. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface [J]. Journal of the American Chemical Society, 2011, 133(14): 5202-5205.
[11]

SHIY, WANGJ, WANGC, et al. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets [J]. Journal of the American Chemical Society, 2015, 137(23): 7365-7370.
[12]

LEE J, MUBEENS, JIX, et al. Plasmonic photoanodes for solar water splitting with visible light [J]. Nano Letters, 2012, 12(9): 5014-5019.
[13]

MUBEENS, LEE J, SINGHN, et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons [J]. Nature Nanotechnology, 2013, 8(4): 247-251.
[14]

HOPEG A, BARDA J. Platinum/Titanium dioxide (Rutile) interface formation of ohmic and rectifying junctions [J]. Journal of Physical Chemistry, 1983, 87(11): 1979-1984.
[15]

GOMES SILVAC, JUAREZR, MARINOT, et al. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water [J]. Journal of the American Chemical Society, 2011, 133(3): 595-602.
[16]

XUZ, LINY, YINM, et al. Understanding the enhancement mechanisms of surface plasmon-mediated photoelectrochemical electrodes: a case study on Au nanoparticle decorated TiO2 nanotubes [J]. Advanced Materials Interfaces, 2015, 2(13): 1500169.
[17]

WANGX, LONGR, LIUD, et al. Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays [J]. Nano Energy, 2016(24): 87-93.
[18]

LIH, LIZ, YUY, et al. Surface-plasmon-resonance-enhanced photoelectrochemical water splitting from Au-nanoparticle-decorated 3D TiO2 nanorod architectures [J]. Journal of Physical Chemistry C, 2017, 121(22): 12071-12079.
[19]

WANGL, HUH, NHAT TRUONGN, et al. Plasmon-induced hole-depletion layer on hematite nanoflake photoanodes for highly efficient solar water splitting [J]. Nano Energy, 2017(35): 171-178.
[20]

GUOS, LIX, RENX, et al. Optical and electrical enhancement of hydrogen evolution by MoS2@MoO3 core-shell nanowires with designed tunable plasmon resonance [J]. Advanced Functional Materials, 2018, 28(32): 1802567.
[21]

HONGD, CAOG, ZHANGX, et al. Construction of a Pt-modified chestnut-shell-like ZnO photocatalyst for high-efficiency photochemical water splitting [J]. Electrochimica Acta, 2018(283): 959-969.
[22]

RAHULT K, SANDHYARANIN. Plasmonic and photonic effects on hydrogen evolution over chemically modified titania inverse opals [J]. ChemNanoMat, 2018, 4(7): 642-648.
[23]

ZHANGY, GUOS, XINX, et al. Plasmonic MoO2 as co-catalyst of MoS2 for enhanced photocatalytic hydrogen evolution [J]. Applied Surface Science, 2020(504): 144291.
[24]

ZHANGX, FUA, CHENX, et al. Highly efficient Cu induced photocatalysis for visible-light hydrogen evolution [J]. Catalysis Today, 2019(335): 166-172.
[25]

BARDA J, FOX M A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen [J]. Accounts of Chemical Research, 1995, 28(3): 141-145.