[1] WANGX,ZENGX,LIX,et al. Investigation on offshore wind turbine with an innovative hybrid monopile foundation:an experimental based study [J]. Renewable Energy,2019,132(1):129-141.
[2] SEIDLL H. Development of an ASP(Air Stabilized Platform) [M]. United States: NASA STI, 1980.
[3] PINKSTERJ A. The effect of air cushions under floating offshore structures [C]// Anon. Behavior of Offshore Structures,[S.l.] , 1997. [S.l.]:[s.n.], 1997: 143-158.
[4] PINKSTERJ A. The behaviour of large air cushion supported structures in waves [J]. Proceeding on Hydroelasticity in Marine Technology,Hydroelasticity,1998(1):497-506.
[5] PINKSTERJ A,SCHOLTE, MEEVERSEJA. The behaviour of a large air-supported MOB at sea [J]. Marine Structures,2001,14(1):163-179.
[6] KESSELJ L,VAN F,PINKSTERJ A. The effect of aircushion division on the structural loads of large floating offshore structures [C]// Anon. Proceedings of OMAE2007, San Diego, California, USA, June 10-15. USA: ASME, 2007: 687-696.
[7] IKOMAT,KOBAYASHIM,MASUDAK,et al. A prediction method of hydroelastic motion of aircushion type floating structures considering with draft effect into hydrodynamic forces [C]// Anon. Proceedings of OMAE2008, Estoril, Portugal, July 15-20. Portugal: ASME, 2008: 421-429.
[8] IKOMAT,MASUDAK,MAEDAH,et al. Effects of aircushion division to hydroelastic responses of an aircushion type very large floating structure [C]// Anon. Proceedings of OMAE2004, Vanconver, British Columbia, Canada, June 20-25. Canada: ASME, 2004: 755-763.
[9] IKOMAT,MASUDAK,OMORIH,et al. Improvement of wave power take-off performance due to the projecting walls for OWC type OWC [C]// Anon. Proceedings of OMAE2013, Nantes, France, June 9-14. France: ASME, 2013: 115-120.
[10] IKOMAT,MASUDAK,RHEEMC K,et al. Hydroelastic behavior of air-supported flexible floating structures [C]// Anon. Proceedings of OMAE2004, Vanconver, British Columbia, Canada, June 20-25. Canada: ASME, 2004: 745-752.
[11] IKOMAT,MASUDAK,RHEEMC K,et al. Hydroelastic behaviors of VLFS supported by many aircushions with the three-dimensional linear theory [J]. Journal of Offshore Mechanics and Arctic Engineering,2012,134(1):011104.
[12] IKOMAT,MASUDAK,RHEEMC K,et al. Response reduction of motion and steady wave drifting forces of floating bodies supported by aircushions in regular waves [C]// Anon. Proceedings of OMAE2006, Hamburg, Germany, June 4-9. Germany: ASME, 2006: 371-377.
[13] IKOMAT,MASUDAK,RHEEMC K,et al. Three-dimensional analysis of hydroelastic behaviours of an aircushion type large floating structure [C]// Anon. Proceedings of OMAE2005, Halkidiki, Greece, June 12-17. Greece: ASME, 2005: 349-355.
[14] IKOMAT,MASUDAK,RHEEMC K,et al. Hydroelastic motion of aircushion type large floating structures with several aircushions using a three-dimensional theory [C]// Proceedings of OMAE2009, Honolulu, Hawaii, USA, May 31- June 5. USA: ASME, 2009: 1331-1338.
[15] CHENUB,MORRIST M T,THIAGARAJANK P. Some hydrodynamic characteristics of an air-cushion supported concrete gravity structure [C]// Anon. The 15th Australasian Fluid Mechanics Conference, the university of Sydeny, Australia, December, 2004. Australia: [s.n.],2004: 13-17.
[16] THIAGARAJANK P,MORRIST M T. Wave-induced motions of an air cushion structure in shallow water [J]. Ocean Engineering,2006,33(8-9):1143-1160.
[17] FAJINMIA A,BROWND T. Draught control for floating vessels using pneumatics [J]. Engineering Structures,1999,21(2):112-124.
[18] CHEUNGK F,PHADKEA C,SMITHD A,et al. Hydrodynamic response of a pneumatic floating platform [J]. Ocean Engineering,2000,27(12):1407-1440.
[19] 别社安,任增金,李增志. 结构气浮的力学特性研究 [J]. 应用力学学报,2004,21(1):68-71+177.

BIES A,RENZ J,LIZ Z. Study on mechanical characteristics of structural air flow [J]. Journal of Applied Mechanics,2004,21(1):68-71.
[20]

LEC H,DINGH Y,ZHANGP Y. Air-floating towing behaviors of multi-bucket foundation platform [J]. China Ocean Engineering,2013,27(5):645-658.
[21]

ZHANGP Y,DINGH Y,LEC H. Hydrodynamic motion of a large prestressed concrete bucket foundation for offshore wind turbines [J]. Journal of Renewable and Sustainable Energy,AIP,2013,5(6):063126.
[22]

ZHANGP Y,DINGH Y,LEC H. Motion analysis on integrated transportation technique for offshore wind turbines [J]. Journal of Renewable and Sustainable Energy,AIP,2013,5(5):053117.
[23]

ZHANGP Y,DINGH Y,LEC H, et al. Hydrodynamic motion of composite bucket foundation for offshore wind turbines [C]// Anon. Proceedings of ISOPE2014, Busan, Korea, June 15-20. Korea : ISOPE, 2014: 238-243.
[24]

S.l.]: ASME, 2013-11149.
[25]

ZHANGP Y,DINGH Y,LEC H,et al. Towing characteristics of large-scale composite bucket foundation for offshore wind turbines [J]. Journal of Southeast University(English Edition),2013,29(3):300-304.
[26]

ZHANGP Y,HANY Q,DINGH Y,et al. Field experiments on wet tows of an integrated transportation and installation vessel with two bucket foundations for offshore wind turbines [J]. Ocean Engineering,2015,108:769–777.
[27] 丁红岩,黄旭,张浦阳,等. 筒型基础平台气浮拖航的影响因素分析 [J]. 工程力学,2012,29(10):193-198.

DINGH Y,HUANGX,ZHANGP Y,et al. Analysis of factors affecting air-floating towing of tubular foundation platform [J]. Engineering Mechanics,2012,29(10):193-198.
[28] 丁红岩,乐丛欢,刘宪庆,等. 四筒基平台拖航试验分析-水深影响研究 [J]. 天津大学学报,2012,45(2):160-166.

DINGH Y,LEC H,LIUX Q,et al. Analysis of towing test of four-tube foundation platform-water depth impact study [J]. Journal of Tianjin University,2012,45(2):160-166.
[29] 丁红岩,刘宪庆,张浦阳,等. 航速对四筒型基础海洋平台拖航影响的试验分析 [J]. 天津大学学报,2012,45(1):43-49.

DINGH Y,LIUX Q,ZHANGP Y,et al. Experimental analysis of the influence of speed on the towing of a four-cylinder foundation offshore platform [J]. Journal of Tianjin University,2012,45(1):43-49.
[30] 丁红岩,石建超,张浦阳,等. 气浮筒型基础结构垂荡水动力系数研究 [J]. 中国海洋大学学报(自然科学版),2015,45(12):113-118.

DINGH Y,SHIJ C,ZHANGP Y,et al. Study on the hydrodynamic coefficient of the heave structure of the airfoil-type foundation [J]. Journal of Ocean University of China,2015,45(12):113-118.
[31] 丁红岩,石建超,张浦阳,等. 气浮桶型基础结构横荡及纵摇水动力系数研究 [J]. 水动力学研究与进展A辑,2015,30(5):516-525.
[32] 黄旭. 海上风电结构一体化安装技术的浮运分析 [D]. 天津:天津大学,2012.
[33] 乐丛欢,丁红岩,张浦阳. 拖缆长度对桶型基础平台气浮拖航影响的模型试验分析 [J]. 哈尔滨工程大学学报,2012,33(7):811-816.
[34] 乐丛欢,丁红岩. 新型浮式系泊系统靠泊动力响应分析 [J]. 天津大学学报,2013,46(1):51-57.

LEC H,DINGH Y. Analysis of berthing dynamic response of new floating system mooring system [J]. Journal of Tianjin University,2013,46(1):51-57.
[35] 刘建辉. 筒型基础海洋平台气浮拖航性能研究 [D]. 天津:天津大学,2009.
[36] 刘宪庆. 气浮桶型基础拖航稳性和动力响应研究 [D]. 天津:天津大学,2012.
[37] 徐炯. 气浮结构的静稳性和动力响应的分析计算 [D]. 天津:天津大学,2004.
[38]

RANDOLPHM F,GOURVENECS. Offshore geotechnical engineering [M]. Boca Raton CRC Press,2011.
[39] 张浦阳,丁红岩,李芳. 海上筒型风机基础地震荷载下的抗液化性能研究 [J]. 太阳能学报,2013,34(9):1587-1593.

ZHANGP Y,DINGH Y,LIF. Study on anti-liquefaction performance of offshore tubular fan under seismic loading [J]. Journal of Solar Energy,2013,34(9):1587-1593.
[40] 张积乐. 人工岛基础气浮拖航运动性能试验研究 [D]. 天津:天津大学,2012.
[41]

KOO, WEONCHEOL. Nonlinear time-domain analysis of motion-restrained pneumatic floating breakwater [J]. Ocean Engineering,2009,36(9-10):723-731.
[42]

HEF,HUANGZ H,LAW A W. Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers:an experimental study [J]. Ocean Engineering,2012,51:16-27.
[43]

GOMESR P F,HENRIQUESJ C C,GATOL M C,et al. Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion [J]. Renewable Energy,2012,44:328-339.
[44]

HEF. Experimental investigation of pile-supported/floating breakwaters integrated with oscillating-water-column converters [D]. Ph. D. dissertation,Nanyang Technological University,2013.
[45]

HEF,HUANGZ,LAW A W K. An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction [J]. Applied Energy,2013,106(1):222-231.
[46]

THIAGARAJAN,KRISH,et al. Vertical motions of a concrete gravity structure supported by air cushions in shallow water [C]// Anon. Proceedings of OMAE2000, New Orleans, USA, June 8-13. USA: ASME, 2000: 1-7.
[47]

LEE C H,NEWMANJ N. Wave effects on large floating structures with air cushions [J]. Marine Structures,2000,13(4-5):315-330.
[48] 丁红岩,朱岩. 海上风电大尺度筒型基础分舱优化设计 [J]. 船海工程,2016,45(3):140-145.
[49] 乐丛欢,丁红岩,张浦阳. 分舱板对海上风机混凝土筒型基础承载模式的影响 [J]. 工程力学,2013,30(4):429-434.