[1] SONG Y T, LI J G, WAN Y X, et al. Engineering design of the CFETR machine [J]. Fusion engineering and design, 2022, 183: 113247. DOI:  10.1016/j.fusengdes.2022.113247.
[2] WEI J, CHEN W G, WU W Y, et al. The superconducting magnets for EAST tokamak [J]. IEEE transactions on applied superconductivity, 2010, 20(3): 556-559. DOI:  10.1109/TASC.2010.2040030.
[3] PARK S, YONEKAWA H, WOO I, et al. Pressure drop of CICC from manufacturing stage to plasma operation in KSTAR superconducting magnet system [J]. IEEE transactions on applied superconductivity, 2013, 23(3): 4201104. DOI:  10.1109/TASC.2012.2237219.
[4] DAVIS S, MAKSOUD W A, BARABASCHI P, et al. JT-60SA magnet system status [J]. IEEE transactions on applied superconductivity, 2018, 28(3): 4201707. DOI:  10.1109/TASC.2017.2768164.
[5] MITCHELL N, DEVRED A. The ITER magnet system: configuration and construction status [J]. Fusion engineering and design, 2017, 123: 17-25. DOI:  10.1016/j.fusengdes.2017.02.085.
[6] DI ZENOBIO A, ANEMONA A, BONIFETTO R, et al. DTT: a challenging framework for a sound superconducting magnets design [J]. IEEE transactions on applied superconductivity, 2022, 32(6): 4201005. DOI:  10.1109/TASC.2022.3153235.
[7] HARTWIG Z S, VIEIRA R F, DUNN D, et al. The SPARC toroidal field model coil program [J]. IEEE transactions on applied superconductivity, 2024, 34(2): 0600316. DOI:  10.1109/TASC.2023.3332613.
[8] ZHENG J X, SONG Y T, LIU X F, et al. Overview of the design status of the superconducting magnet system of the CFETR [J]. IEEE transactions on applied superconductivity, 2018, 28(3): 4204305. DOI:  10.1109/TASC.2018.2797965.
[9] CORATO V, BAGNI T, BIANCOLINI M E, et al. Progress in the design of the superconducting magnets for the EU DEMO [J]. Fusion engineering and design, 2018, 136: 1597-1604. DOI:  10.1016/j.fusengdes.2018.05.065.
[10] TOBITA K, UTOH H, HIWATARI R, et al. Conceptual design of Japan's fusion DEMO reactor (JADEMO) and superconducting coil issues [J]. Journal of physics: conference series, 2019, 1293: 012078.
[11] KIM H W, IM K, LEE H J, et al. Design updates of magnet system for Korean fusion demonstration reactor, K-DEMO [J]. Fusion engineering and design, 2019, 146: 1086-1090. DOI:  10.1016/j.fusengdes.2019.02.012.
[12] 王腾. 超导磁体技术与磁约束核聚变 [J]. 南方能源建设, 2022, 9(4): 108-117. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.014.

WANG T. Superconducting magnet technology and magnetically confined fusion [J]. Southern energy construction, 2022, 9(4): 108-117. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.014.
[13]

WESSON J. Tokamaks (4th ed. ) [M]. Oxford: Oxford University Press, 2011.
[14]

HAO Q W, HUSSAIN M T, DAI C, et al. Conductor design and performance analysis for CFETR magnet [J]. Fusion engineering and design, 2022, 182: 113224. DOI:  10.1016/j.fusengdes.2022.113224.
[15]

https://en.wikipedia.org/wiki/Tokamak. (查阅网上资料,请补充完整信息)
[16] 南和礼. 超导磁体设计基础 [M]. 北京: 国防工业出版社, 2007.

NAN H L. Foundation of superconducting magnet design [M]. Beijing: National Defense Industry Press, 2007.
[17] 许强林, 李华, 宋执权, 等. CFETR失超保护系统总体设计研究 [J]. 南方能源建设, 2022, 9(2): 33-38. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.004.

XU Q L, LI H, SONG Z Q, et al. Research on overall design of quench protection system for CFETR [J]. Southern energy construction, 2022, 9(2): 33-38. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.004.
[18]

WU Y, LI J G, SHEN G, et al. Preliminary design of CFETR TF prototype coil [J]. Journal of fusion energy, 2021, 40(1): 5. DOI:  10.1007/s10894-021-00291-8.
[19]

HURLEY P, KIM K M, DUARTE J P. Modeling of quenching temperature with the effects of axial conduction resulting from quench front propagation [J]. Nuclear engineering and design, 2024, 416: 112785. DOI:  10.1016/j.nucengdes.2023.112785.
[20]

MITCHELL N, DEVRED A, LIBEYRE P, et al. The ITER magnets: design and construction status [J]. IEEE transactions on applied superconductivity, 2012, 22(3): 4200809. DOI:  10.1109/TASC.2011.2174560.
[21]

WANG T, HU Y L, FU P, et al. Quench detection method for superconducting magnets with a phase difference measurement system based on multiple-correlation [J]. Fusion engineering and design, 2021, 170: 112658. DOI:  10.1016/j.fusengdes.2021.112658.
[22]

MARCHEVSKY M. Quench detection and protection for high-temperature superconductor accelerator magnets [J]. Instruments, 2021, 5(3): 27. DOI:  10.3390/instruments5030027.
[23]

HU Y L, LI J G, SHEN B, et al. Study of electromagnetic noise influence on quench detection system under different discharge conditions for EAST [J]. Fusion engineering and design, 2013, 88(2): 73-78. DOI:  10.1016/j.fusengdes.2012.11.009.
[24]

CHU Y, YONEKAWA H, KIM Y O, et al. Quench detection based on voltage measurement for the KSTAR superconducting coils [J]. IEEE transactions on applied superconductivity, 2009, 19(3): 1565-1568. DOI:  10.1109/TASC.2009.2018238.
[25]

COATANEA-GOUACHET M, CARRILLO D, LEE S, et al. Electromagnetic quench detection in ITER superconducting magnet systems [J]. IEEE transactions on applied superconductivity, 2015, 25(3): 4202507. DOI:  10.1109/TASC.2015.2390296.
[26]

O'Loughlin M. DDD11-1 – ‘System requirements expansion and design choices’ [EB/OL]. ITER_D_2NPLKM,https://user.iter.org/?uid=2NPLKM&action=get_document. (查阅网上资料,未找到本条文献信息,请确认)
[27]

ALBANESE R, BELLESIA B, PALMACCIO R, et al. Electromagnetic transient studies in the ITER tokamak [J]. International journal of applied electromagnetics and mechanics, 2012, 39(1/4): 65-71. DOI:  10.3233/JAE-2012-1444.
[28]

LUCE T C, HUMPHREYS D A, JACKSON G L, et al. Inductive flux usage and its optimization in tokamak operation [J]. Nuclear fusion, 2014, 54(9): 093005. DOI:  10.1088/0029-5515/54/9/093005.
[29]

WANG T, HU Y L, WANG Z L, et al. Numerical model development for CFETR CSMC quench detection system [J]. IEEE transactions on applied superconductivity, 2022, 32(4): 4700405. DOI:  10.1109/TASC.2022.3146808.
[30]

WANG T, FU P, HU Y L, et al. A novel real-time feedback compensation system associated with inductive voltage generated by plasma in the EAST PF coil quench detection system [J]. Fusion engineering and design, 2019, 145: 11-17. DOI:  10.1016/j.fusengdes.2019.05.003.