[1] HUNTLEYB,COLLINGHAMY C,GREENR E,et al. Potential impacts of climatic change upon geographical distributions of birds [J]. IBIS,2006,148(Supp.1):8-28.
[2] REN. Renewables 2019 Global Status Report [R]. Paris:REN21 Secretariat, 1997.
[3] BAIZ W. An analysis about wind farm construction based on the perspective of the development of ecological environment [J]. Advanced Materials Research,2013,772(9):619-621.
[4] DAIK,BERGOTA,LIANGC,et al. Environmental issues associated with wind energy-a review [J]. Renewable Energy,2015,75(1):911-921.
[5] SMALLWOODS K,THELANDERC. Bird mortality in the altamont pass wind resource area,California [J]. The Journal of Wildlife Management,2008,72(1):215-223.
[6] DESHOLMM. Wind farm related mortality among avian migrants-a remote sensing study and model analysis [M]. Denmark:National Environmental Research Institute,2006.
[7] FOX A D. Eco-energy and urbanisation:messages from birds about wind turbine proliferation [J]. Boreal environment research,2011,16(Supp. B):14-25.
[8] SMALLWOODK S. Comparing bird and bat fatality‐rate estimates among North American wind‐energy projects [J]. Wildlife Society Bulletin,2013,37(1):19-33.
[9] ERICKSONW P,WOLFEM M,BAY K J,et al. A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities [J]. PLoS One,2014,9(9):e107491.
[10] MERRIMANJ. How many birds are killed by wind turbines? [J/OL]. (2021)[2021-01-26] https://abcbirds.org/blog21/wind-turbine-mortality/.
[11] LUCASD M,JANSSG F E,FERRERM. The effects of a wind farm on birds in a migration point:the strait of gibraltar [J]. Biodiversity and Conservation,2004,13(2):395-407.
[12] LANGSTONR,PULLANJ D. Wind farms and birds:an analysis of the effects of wind farms on birds,and guidance on environmental assessment criteria and site selection issues [R]. Strasbourg:Council of Europe, 2003.
[13] SOVACOOLB K. Contextualizing avian mortality:a preliminary appraisal of bird and bat fatalities from wind,fossil-fuel,and nuclear electricity [J]. Energy Policy,2009,37(6):2241-2248.
[14] LEDDYK L,HIGGINSK F,NAUGLED E. Effects of wind turbines on upland nesting birds in conservation reserve program grasslands [J]. Wilson Bulletin,1999,111(1):100-104.
[15] ZWARTM C,DUNNJ C,MCGOWANP J K,et al. Wind farm noise suppresses territorial defense behavior in a songbird [J]. Behavioral Ecology,2016,27(1),101-108.
[16] NAZIRM S,ALI N,BILALM,et al. Potential environmental impacts of wind energy development:a global perspective [J]. Current Opinion in Environmental Science & Health,2020,13(1):85-90.
[17] GONZALEZM A,GARCíA-TEJEROS,WENGERTE,et al. Severe decline in cantabrian capercaillie tetrao urogallus cantabricus habitat use after construction of a wind farm [J]. Bird Conservation International,2015,26(2):256-261.
[18] FIELDINGA H,ANDERSOND,BENNS,et al. Non-territorial GPS-tagged golden eagles aquila chrysaetos at two scottish wind farms:avoidance influenced by preferred habitat distribution,wind speed and blade motion status [J]. PLoS One,2021,16(8):0254159-0254159.
[19] SONGN,XUH,ZHAOS,et al. Effects of wind farms on the nest distribution of magpie(pica pica)in agroforestry systems of Chongming Island,China [J]. Global Ecology and Conservation,2021,27:e01536.
[20] PETERSENI K,CHRISTENSENT K,KAHLERTJ,et al. Final results of bird studies at the offshore wind farms at Nysted and Horns Rev. Denmark [R]. Denmark :Denmark NERI Report,2006.
[21] PETERSENI K,FOX A D. Changes in bird habitat utilisation around the Horns Rev 1 offshore wind farm, with particular emphasis on Common Scoter [R]. Denmark :Denmark NERI Report,2007.
[22] DAHLE L,BEVANGERK,NYGÅRDT,et al. Reduced breeding success in white-tailed eagles at Smøla windfarm,western Norway,is caused by mortality and displacement [J]. Biological Conservation, 2012,145(1):79-85.
[23] XUH,ZHAOS S,SONGN,et al. Abundance and behavior of little egrets(egretta garzetta)near an onshore wind farm in Chongming Dongtan,China [J]. Journal of Cleaner Production(J Clean Prod),2021(8):312.
[24] 莫爵亭,宋国炜,宋烺. 广东阳江“海上风电+海洋牧场”生态发展可行性初探 [J]. 南方能源建设,2020,7(2):122-126.

MOJ T,SONGG W,SONGL. Preliminary discussion on the ecological development feasibility of "offshore wind power + ocean ranch" in Yangjiang,Guangdong [J]. Southern Energy Construction, 2020,7(2):122-126.
[25]

HISCOCKK,TYLER-WALTERSH,JONESH. High level environmental screening study for offshore wind farm developments-marine habitats and species project [R]. Plymouth:The Laboratory, Citadel Hil ,2002.
[26]

GARCIAD A,CANAVEROG,ARDENGHIF,et al. Analysis of wind farm effects on the surrounding environment:assessing population trends of breeding passerines [J]. Renewable Energy,2015,80(8):190-196.
[27]

LINDEBOOMH J,KOUWENHOVENH J,BERGMANM J N,et al. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone;a compilation [J]. Environmental Research Letters,2011,6(3):035101-13.
[28]

WELCKERJ,NEHLSG. Displacement of seabirds by an offshore wind farm in the North Sea [J]. Marine Ecology Progress Series,2016,554(7):173-182.
[29]

VILLEGASP R,MACGREGORF I,ORTIZM T,et al. Bird-community shifts in relation to wind farms:a case study comparing a wind farm,croplands,and secondary forests in Southern Mexico [J]. The Condor,2012,114(4):711-719.
[30]

MILLSS L,SOULÉE M,DOAKF D. The keystone-species concept in ecology and conservation [J]. Bioscience,1993,43(4):219-224.
[31]

PEARCE-HIGGINSJ W,STEPHENL,DOUSEA,et al. Greater impacts of wind farms on bird populations during construction than subsequent operation:results of a multi-site and multi-species analysis [J]. Journal of Applied Ecology,2012,49(2):386-394.
[32]

RYDELLJ,OTTVALLR,GREENM,et al. The effects of wind power on birds and bats: an updated synthesis report 2017 [M]. Bromma:CM Gruppen AB,2017.
[33]

HÜPPOPO,CIACHM,DIEHLR,et al. Perspectives and challenges for the use of radar in biological conservation [J]. Ecography(Cop.),2019,42(5):912-930.
[34]

BURKHOLDERO A. Shift in the wind:siting more wind power projects along texas' 367-mile coast of gulf winds,and mitigating potential risk to migratory bird populations [J]. Seattle Journal Environmental Law,2016,6(1):131-160.
[35]

POESSELS A,BRANDTJ,MENDENHALLL,et al. Flight response to spatial and temporal correlates informs risk from wind turbines to the california condor [J]. The Condor:Ornithological Applications,2018,120(2):330-342.
[36]

BOLKERE D,HATCHJ J,ZARAC. Modeling how wind farm geometry affects bird mortality [J]. Quantitative Biology, 2014(8):1-18.
[37]

JENKINSA R,REIDT,PLESSISJ D,et al. Combining radar and direct observation to estimate pelican collision risk at a proposed wind farm on the cape west coast,South Africa [J]. Plos One,2018,13(2):0192515.
[38]

SMALLWOODK S , KARASB. Avian and bat fatality rates at old‐generation and repowered wind turbines in California [J]. The Journal of Wildlife Management,2009,73(7):1062-1071.
[39]

MCISAACH P. Raptor acuity and wind turbine blade conspicuity [C]// National Wind Coordinating Committee (NWCC). National Avian Wind Power Planning Meeting, California, United States, May 16-17, 2000.California: HWCC, 2001: 59-87.
[40]

MARSHG. WTS:the avian dilemma [J]. Renewable Energy Focus, 2007,8(4):42-45.
[41]

ARNETTE B,ERICKSONW P,KERNSJ. Relationships between bats and wind turbines in pennsylvania and west virginia: an assessment of bat fatality search protocols,patterns of fatality,and behavioral interactions with wind turbines [R]. Texas,USA: Bat Conservation International, 2005.