[1] Global Wind Energy Council. Global wind report 2023 [R]. Brussels, Belgium: Global Wind Energy Council, 2023.
[2] 王诗超, 刘嘉畅, 刘展志, 等. 海上风电产业现状及未来发展分析 [J]. 南方能源建设, 2023, 10(4): 103-112. DOI:  10.16516/j.gedi.issn2095-8676.2023.04.010.

WANG S C, LIU J C, LIU Z Z, et al. Analysis of current situation and future development of offshore wind power industry [J]. Southern energy construction, 2023, 10(4): 103-112. DOI:  10.16516/j.gedi.issn2095-8676.2023.04.010.
[3]

CRUZ J, ATCHESON M. Floating offshore wind energy: the next generation of wind energy [M]. Cham: Springer, 2016. DOI:  10.1007/978-3-319-29398-1.
[4] 陈嘉豪, 裴爱国, 马兆荣, 等. 海上漂浮式风机关键技术研究进展 [J]. 南方能源建设, 2020, 7(1): 8-20. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.002.

CHEN J H, PEI A G, MA Z R, et al. A review of the key technologies for floating offshore wind turbines [J]. Southern energy construction, 2020, 7(1): 8-20. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.002.
[5]

CORDLE A, JONKMAN J. State of the art in floating wind turbine design tools [R]. Golden: National Renewable Energy Laboratory, 2011.
[6]

NIELSEN F G, HANSON T D, SKAARE B. Integrated dynamic analysis of floating offshore wind turbines [C]//25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, June 4-9, 2006. Hamburg, Germany: ASME, 2006: 671-679. DOI:  10.1115/OMAE2006-92291.
[7]

THOMSEN J B, BERGUA R, JONKMAN J, et al. Modeling the TetraSpar floating offshore wind turbine foundation as a flexible structure in OrcaFlex and OpenFAST [J]. Energies, 2021, 14(23): 7866. DOI:  10.3390/en14237866.
[8]

BLONDEL F, BOISARD R, MILEKOVIC M, et al. Validation and comparison of aerodynamic modelling approaches for wind turbines [J]. Journal of physics:conference series, 2016, 753(2): 022029. DOI:  10.1088/1742-6596/753/2/022029.
[9]

MYHR A, HANSEN F E, MOELLER U, et al. A comparison of existing and conceptual designs for floating wind turbines [C]//Renewable Energy Research Conference 2010, July 6-August 6, 2010.
[10]

JONKMAN J M. Dynamics of offshore floating wind turbines—model development and verification [J]. Wind energy, 2009, 12(5): 459-492. DOI:  10.1002/we.347.
[11]

COULLING A J, GOUPEE A J, ROBERTSON A N, et al. Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data [J]. Journal of renewable and sustainable energy, 2013, 5(2): 023116. DOI:  10.1063/1.4796197.
[12]

DNV. Wind turbine design software - Bladed [EB/OL]. [2023-06-05]. https://www.dnv.com/services/wind-turbine-design-software-bladed-3775.
[13]

LARSEN T J, HANSEN A M. How 2 HAWC2, the user's manual [R]. Roskilde, Denmark: Riso National Laboratory, 2007.
[14]

MATHA D, SCHLIPF M, CORDLE A, et al. Challenges in simulation of aerodynamics, hydrodynamics, and mooring-line dynamics of floating offshore wind turbines [R]. Golden: National Renewable Energy Laboratory, 2011.
[15]

WITHEE J W. Fully coupled dynamic analysis of a floating wind turbine system [D]. Cambridge: Massachusetts Institute of Technology, 2004.
[16]

YAO Y S, NING D Z, DENG S J, et al. Hydrodynamic investigation on floating offshore wind turbine platform integrated with porous shell [J]. Energies, 2023, 16(11): 4376. DOI:  10.3390/en16114376.
[17]

CHEN J H, HU Z Q, LIU G L, et al. Coupled aero-hydro-servo-elastic methods for floating wind turbines [J]. Renewable energy, 2019, 130: 139-153. DOI:  10.1016/j.renene.2018.06.060.
[18] 陈嘉豪, 刘格梁, 胡志强. 海上浮式风机时域耦合程序原理及其验证 [J]. 上海交通大学学报, 2019, 53(12): 1440-1449. DOI:  10.16183/j.cnki.jsjtu.2019.12.006.

CHEN J H, LIU G L, HU Z Q. Development and validation of a time-domain coupling simulation code for floating offshore wind turbines [J]. Journal of Shanghai jiaotong university, 2019, 53(12): 1440-1449. DOI:  10.16183/j.cnki.jsjtu.2019.12.006.
[19]

LI Y W, PAIK K J, XING T, et al. Dynamic overset CFD simulations of wind turbine aerodynamics [J]. Renewable energy, 2012, 37(1): 285-298. DOI:  10.1016/j.renene.2011.06.029.
[20]

TRAN T, KIM D, SONG J. Computational fluid dynamic analysis of a floating offshore wind turbine experiencing platform pitching motion [J]. Energies, 2014, 7(8): 5011-5026. DOI:  10.3390/en7085011.
[21]

PEGALAJAR-JURADO A, BREDMOSE H, BORG M, et al. State-of-the-art model for the LIFES50+ OO-Star wind floater semi 10MW floating wind turbine [J]. Journal of physics: conference series, 2018, 1104: 012024. DOI:  10.1088/1742-6596/1104/1/012024.
[22]

BAK C, ZAHLE F, BITSCHE R, et al. The DTU 10-MW reference wind turbine [R]. Fredericia, Denmark: DTU, 2013.
[23] 李旭, 肖龙飞, 魏汉迪, 等. 系泊缆破断对半潜式平台水动力性能影响的试验研究 [J]. 海洋工程装备与技术, 2023, 10(1): 48-56.

LI X, XIAO L F, WEI H D, et al. Experimental study on the influence of mooring line breaking on the hydrodynamic performance of semi-submersible platform [J]. Ocean engineering equipment and technology, 2023, 10(1): 48-56.
[24] 张会良, 肖龙飞, 徐秀龙. 深水圆筒型钻井平台张紧式系泊系统设计 [J]. 海洋工程, 2021, 39(6): 10-18. DOI:  10.16483/j.issn.1005-9865.2021.06.002.

ZHANG H L, XIAO L F, XU X L. Design of taut mooring system for a deep water cylindrical drilling platform [J]. The ocean engineering, 2021, 39(6): 10-18. DOI:  10.16483/j.issn.1005-9865.2021.06.002.
[25]

DNV. Standard for classification of wind turbine installation units: DNV—OS—J301 [S]. Oslo, Norway: DNV, 2011.