[1] ZHANG P Y, HE S H, LIU Y G, et al. Force transfer characteristics of composite bucket foundation for offshore wind turbines [J]. Journal of renewable and sustainable energy, 2016, 8(1): 013307. DOI:  10.1063/1.4942839.
[2] ZHANG P Y, DING H Y, LE C H, et al. Towing characteristics of large-scale composite bucket foundation for offshore wind turbines [J]. Journal of southeast university, 2013, 29(3): 300-304. DOI:  10.3969/j.issn.1003-7985.2013.03.013.
[3] DING H Y, FENG Z T, ZHANG P Y, et al. Floating performance of a composite bucket foundation with an offshore wind tower during transportation [J]. Energies, 2020, 13(4): 882. DOI:  10.3390/en13040882.
[4] LEE M E, KIM G, JEONG S T, et al. Assessment of offshore wind energy at Younggwang in Korea [J]. Renewable and sustainable energy reviews, 2013, 21: 131-141. DOI:  10.1016/j.rser.2012.12.059.
[5] KIM J Y, OH K Y, KIM M S, et al. Evaluation and characterization of offshore wind resources with long-term met mast data corrected by wind Lidar [J]. Renewable energy, 2019, 144: 41-55. DOI:  10.1016/j.renene.2018.06.097.
[6] WANG X F, YANG X, ZENG X W. Seismic centrifuge modelling of suction bucket foundation for offshore wind turbine [J]. Renewable energy, 2017, 114: 1013-1022. DOI:  10.1016/j.renene.2017.07.103.
[7] DING H Y, WANG H X, ZHANG P Y. Research on soil liquefaction of bucket foundation under seismic loads [J]. Journal of Hebei University of Technology, 2016, 45(1): 90-95. DOI:  10.14081/j.cnki.hgdxb.2016.01.017.
[8] ZHANG P Y, DING H Y, LI F. Study on soil liquefaction of bucket foundation of offshore wind turbine [J]. Acta energiae solaris sinica, 2013, 34(9): 1587-1593. DOI:  10.3969/j.issn.0254-0096.2013.09.017.
[9] LI F. Study on the soil liquefaction of bucket foundation of offshore wind turbine generator [J]. Tianjin: Tianjin University, 2010. DOI:  10.7666/d.y1925577.
[10] HOULSBY G T, KELLY R B, HUXTABLE J, et al. Field trials of suction caissons in clay for offshore wind turbine foundations [J]. Géotechnique, 2005, 55(4): 287-296. DOI:  10.1680/geot.2005.55.4.287.
[11] HOULSBY G T, KELLY R B, HUXTABLE J, et al. Field trials of suction caissons in sand for offshore wind turbine foundations [J]. Géotechnique, 2006, 56(1): 3-10. DOI:  10.1680/geot.2006.56.1.3.
[12] SALEH A M, SAHAFNIA M, BAHADORI A, et al. Seismic behavior of suction caisson for offshore wind turbine to generate more renewable energy [J]. International journal of environmental science and technology, 2019, 16(7): 2961-2972. DOI:  10.1007/s13762-018-2150-8.
[13] ALATI N, FAILLA G, ARENA F. Seismic analysis of offshore wind turbines on bottom-fixed support structures [J]. Philosophical transactions of the royal society A:mathematical, physical and engineering sciences, 2015, 373(2035): 20140086. DOI:  10.1098/rsta.2014.0086.
[14] KARIMI Z, DASHTI S. Numerical and centrifuge modeling of seismic soil-foundation-structure interaction on liquefiable ground [J]. Journal of geotechnical and geoenvironmental engineering, 2016, 142(1): 04015061. DOI:  10.1061/(ASCE)GT.1943-5606.0001346.
[15] KU C Y, CHIEN L K. Modeling of load bearing characteristics of jacket foundation piles for offshore wind turbines in Taiwan [J]. Energies, 2016, 9(8): 625. DOI:  10.3390/en9080625.
[16] ZHANG J H, ZHANG L M, LU X B. Centrifuge modeling of suction bucket foundations for platforms under ice-sheet-induced cyclic lateral loadings [J]. Ocean engineering, 2007, 34(8/9): 1069-1079. DOI:  10.1016/j.oceaneng.2006.08.009.
[17] ZHANG P Y, XIONG K P, DING H Y, et al. Anti-liquefaction characteristics of composite bucket foundations for offshore wind turbines [J]. Journal of renewable and sustainable energy, 2014, 6(5): 053102. DOI:  10.1063/1.4895909.
[18] DING H Y, ZHANG C, HAN X S. Analysis of clay soil softening in ice-induced vibration of bucket foundation platform [J]. Journal of Liaoning Technical University, 2007, 26(3): 369-371. DOI:  10.3969/j.issn.1008-0562.2007.03.016.
[19] WANG X F, ZENG X W, LI X Y, et al. Liquefaction characteristics of offshore wind turbine with hybrid monopile foundation via centrifuge modelling [J]. Renewable energy, 2020, 145: 2358-2372. DOI:  10.1016/j.renene.2019.07.106.
[20] ZHANG J X, CHENG W L, CHENG X L, et al. Seismic responses analysis of suction bucket foundation for offshore wind turbine in clays [J]. Ocean engineering, 2021, 232: 109159. DOI:  10.1016/J.OCEANENG.2021.109159.
[21] SADOWSKI A J, CAMARA A, MÁLAGA-CHUQUITAYPE C, et al. Seismic analysis of a tall metal wind turbine support tower with realistic geometric imperfections [J]. Earthquake engineering & structural dynamics, 2017, 46(2): 201-219. DOI:  10.1002/eqe.2785.
[22] KATSANOS E I, THÖNS S, GEORGAKIS C T. Wind turbines and seismic hazard: a state-of-the-art review [J]. Wind energy, 2016, 19(11): 2113-2133. DOI:  10.1002/we.1968.
[23] OLALO L T, CHOO Y W, YANG S G, et al. Seismic response of bucket foundations for offshore wind tower [J]. Journal of the Korean society of hazard mitigation, 2015, 15(5): 179-189. DOI:  10.9798/KOSHAM.2015.15.5.179.
[24] DING H Y, PAN C, ZHANG P Y, et al. Shaking table tests and seismic response of three-bucket jacket foundations for offshore wind turbines [J]. Journal of ocean university of China, 2022, 21(3): 719-736. DOI:  10.1007/s11802-022-4742-7.
[25] ZHANG P Y, LI J Y, LE C H, et al. Seismic responses of two bucket foundations for offshore wind turbines based on shaking table tests [J]. Renewable energy, 2022, 187: 1100-1117. DOI:  10.1016/J.RENENE.2022.02.033.
[26] Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Code for seismic design of buildings: GB 50011—2010 [S]. Beijing: China Architecture & Building Press, 2010.