[1] 国家发展改革委, 国家能源局. “十四五”现代能源体系规划 [EB/OL]. (2022-03-22) [2023-01-26]. https://www.ndrc.gov.cn/xwdt/tzgg/202203/t20220322_1320017.html.

National Development and Reform Commission, National Energy Administration. "Fourteenth Five-Year Plan" modern energy system planning [EB/OL].(2022-03-22)[2023-01-26]. https://www.ndrc.gov.cn/xwdt/tzgg/202203/t20220322_1320017.html.
[2]

ROSA-CLOT M, TINA G M. Current status of FPV and trends [M]//ROSA-CLOT M, TINA G M. Floating PV Plants. Amsterdam: Elsevier, 2020: 9-18. DOI: 10.1016/B978-0-12-817061-8.00002-6.
[3]

KOMUSANAC I, FRAILE D, BRINDLEY G. Wind energy in Europe in 2018 - trends and statistics [R]. Brussels, Belgium: European Wind Energy Association, 2019.
[4] 国家发展改革委, 国家能源局. 关于促进新时代新能源高质量发展的实施方案的通知: 国办函〔2022〕39号[EB/OL].(2022-05-14)[2023-01-26]. http://www.gov.cn/zhengce/content/2022-05/30/content_5693013.htm.

National Development and Reform Commission, National Energy Administration. Implementation plan for promoting highquality development of new energy in the new era: State Office Letter 〔2022〕NO.39 [EB/OL]. (2022-05-14)[2023-01-26]. http://www.gov.cn/zhengce/content/2022-05/30/content_5693013.htm.
[5]

GOLROODBARI S Z, VAN SARK W. Simulation of performance differences between offshore and land-based photovoltaic systems [J]. Progress in Photovoltaics: Research and Applications, 2020, 28(9): 873-886. DOI:  10.1002/pip.3276.
[6] 卢纯. 开启我国能源体系重大变革和清洁可再生能源创新发展新时代−深刻理解碳达峰、碳中和目标的重大历史意义 [J]. 人民论坛·学术前沿, 2021(14): 28-41. DOI:  10.16619/j.cnki.rmltxsqy.2021.14.004.

LU C. Opening a new era of major changes in China's energy system and innovative development of clean and renewable energy——deeply understanding the great historical significance of the targets of carbon peak and carbon neutralization [J]. People's Forum Academic Frontiers, 2021(14): 28-41. DOI:  10.16619/j.cnki.rmltxsqy.2021.14.004.
[7]

VO T T E, KO H, HUH J, et al. Overview of possibilities of solar floating photovoltaic systems in the offshore industry [J]. Energies, 2021, 14(21): 6988. DOI:  10.3390/en14216988.
[8]

YOUSUF H, KHOKHAR M Q, ZAHID M A, et al. A review on floating photovoltaic technology (FPVT) [J]. Current Photovoltaic Research, 2020, 8(3): 67-78. DOI:  10.21218/CPR.2020.8.3.067.
[9]

NOOKUEA W, CAMPANA P E, YAN J Y. Evaluation of solar PV and wind alternatives for self renewable energy supply: case study of shrimp cultivation [J]. Energy Procedia, 2016, 88: 462-469. DOI:  10.1016/j.egypro.2016.06.026.
[10] 刘石磊. 氯化镁太阳能电池低本无毒 [J]. 化工管理, 2014(22): 62. DOI:  10.3969/j.issn.1008-4800.2014.22.020.

LIU S L. Magnesium chloride solar cells with low cost and non-toxic [J]. Chemical Management, 2014(22): 62. DOI:  10.3969/j.issn.1008-4800.2014.22.020.
[11] 张木梓, 王艺澄. 全球水上光伏产业的发展现状及市场前景分析 [J]. 太阳能, 2020(7): 19-24. DOI:  10.19911/j.1003-0417.2020.07.003.

ZHANG M Z, WANG Y C. Global floating PV industry development status and market prospect analysis [J]. Solar Energy, 2020(7): 19-24. DOI:  10.19911/j.1003-0417.2020.07.003.
[12] 刘洋. 太阳能电池用多晶硅材料生产现状及发展 [J]. 科技风, 2018(2): 36. DOI:  10.19392/j.cnki.1671-7341.201802034.

LIU Y. Production status and development of polysilicon materials for solar cells [J]. Scientific and Technological Wind, 2018(2): 36. DOI:  10.19392/j.cnki.1671-7341.201802034.
[13] 吴继亮, 梁甜, 糜文杰, 等. 水上漂浮式光伏电站的发展及应用前景分析 [J]. 太阳能, 2019(12): 20-23. DOI:  10.3969/j.issn.1003-0417.2019.12.003.

WU J L, LIANG T, MI W J, et al. Analysis on the development and application prospect of floating photovoltaic power stations [J]. Solar Energy, 2019(12): 20-23. DOI:  10.3969/j.issn.1003-0417.2019.12.003.
[14]

OLIVEIRA-PINTO S, STOKKERMANS J. Marine floating solar plants: an overview of potential, challenges and feasibility [J]. Proceedings of the Institution of Civil Engineers - Maritime Engineering, 2020, 173(4): 120-135. DOI:  10.1680/jmaen.2020.10.
[15] 胡俊鹏, 韩本帅, 林泽源, 等. 光伏发电系统在智能变电站中的应用规模研究 [J]. 电气应用, 2013, 32(19): 29-31.

HU J P, HAN B S, LIN Z Y, et al. Research on the application scale of photovoltaic power generation system in intelligent substation [J]. Electrical Application, 2013, 32(19): 29-31.
[16] 董劲. Eu配合物/EVA复合膜的制备及在晶体硅太阳能电池中的应用研究 [D]. 南京: 东南大学, 2017.

DONG J. Preparation of Europium complex/EVA composite film and its application in crystalline silicon solar cells [D]. Nanjing: Southeast University, 2017.
[17] 太阳能光伏网. EVA胶膜是什么材料?EVA胶膜产品规格和优点介绍 [EB/OL].(2022-08-18)[2023-01-26]. http://www.zceva.cn/hangye/2298.html.

Solar Photovoltaic Network. What material is EVA film? EVA film product specifications and advantages [EB/OL].(2022-08-18)[2023-01-26]. http://www.zceva.cn/hangye/2298.html.
[18] 孙祖峰, 陈佩杭. 漂浮式光伏应用及技术难点简析 [J]. 科技创新与应用, 2016(12): 37-38.

SUN Z F, CHEN P H. Brief analysis of floating photovoltaic applications and technical difficulties [J]. Technology Innovation and Application, 2016(12): 37-38.
[19] 常颖, 马建军, 陈博, 等. 东北寒冷地区水面漂浮式光伏电站关键技术综述 [J]. 水电与抽水蓄能, 2021, 7(6): 98-102. DOI:  10.3969/j.issn.2096-093X.2021.06.025.

CHANG Y, MA J J, CHEN B, et al. The introduction of key technology of floating photovoltaic power station in cold area of northeast China [J]. Hydropower and Pumped Storage, 2021, 7(6): 98-102. DOI:  10.3969/j.issn.2096-093X.2021.06.025.
[20] 王浤宇, 王佩明, 李艳红, 等. 水上漂浮式光伏发电系统 [J]. 华电技术, 2017, 39(3): 74-76. DOI:  10.3969/j.issn.1674-1951.2017.03.028.

WANG H Y, WANG P M, LI Y H, et al. Floating photovoltaic power generation system [J]. Huadian Technology, 2017, 39(3): 74-76. DOI:  10.3969/j.issn.1674-1951.2017.03.028.
[21] 孙杰. 水上光伏电站应用技术与解决方案 [J]. 太阳能, 2017(6): 32-35. DOI:  10.19911/j.1003-0417.2017.06.009.

SUN J. Application technology and solution of water photovoltaic power station [J]. Solar Energy, 2017(6): 32-35. DOI:  10.19911/j.1003-0417.2017.06.009.
[22]

PINTO S O, STOKKERMANS J. Assessment of the potential of different floating solar technologies–overview and analysis of different case studies [J]. Energy Conversion and Management, 2020, 211: 112-747. DOI:  10.1016/j.enconman.2020.112747.
[23]

Research and Markets. Offshore mooring systems market: global industry analysis, size, share, growth, trends and forecast 2015-2021 [R]. Ireland: Taylors Lane, 2016.
[24] 肖福勤, 孔耀华, 余德海, 等. 漂浮式光伏电站漂浮方阵多点系泊特性研究 [J]. 人民长江, 2020, 51(4): 168-173. DOI:  10.16232/j.cnki.1001-4179.2020.04.028.

XIAO F Q, KONG Y H, YU D H, et al. Study on multi-point mooring characteristics of floating array in floating photovoltaic power station [J]. Yangtze River, 2020, 51(4): 168-173. DOI:  10.16232/j.cnki.1001-4179.2020.04.028.
[25] 李童. 近海石油平台电缆敷设工艺 [J]. 石油和化工设备, 2021, 24(11): 45-49+44. DOI:  10.3969/j.issn.1674-8980.2021.11.010.

LI T. Cable laying process for offshore oil platform [J]. Petro & Chemical Equipment, 2021, 24(11): 45-49+44. DOI:  10.3969/j.issn.1674-8980.2021.11.010.
[26] 高立刚, 田莉莎, 张堃, 等. 大型光伏电站组串式逆变器布置方案分析 [J]. 西北水电, 2021(2): 96-99. DOI:  10.3969/j.issn.1006-2610.2021.02.020.

GAO L G, TIAN L S, ZHANG K, et al. Analysis of the layout scheme of string inverters in large-scale PV power stations [J]. Northwest Hydropower, 2021(2): 96-99. DOI:  10.3969/j.issn.1006-2610.2021.02.020.
[27] 张玺. 谈大型地面集中式光伏电站的方案设计 [J]. 红水河, 2022, 41(3): 62-65. DOI:  10.3969/j.issn.1001-408X.2022.03.013.

ZHANG X. Scheme design of large-scale ground centralized photovoltaic power station [J]. Hongshui River, 2022, 41(3): 62-65. DOI:  10.3969/j.issn.1001-408X.2022.03.013.
[28] 袁海山, 叶昀, 杨俊杰, 等. 光伏发电系统及其并网技术 [J]. 智能建筑, 2021(4): 63-68.

YUAN H S, YE Y, YANG J J, et al. Photovoltaic power generation system and its grid connected technology [J]. Intelligent Building, 2021(4): 63-68.
[29] 石涛. 水上光伏电站站址选择及总平面布置设计要点探讨 [J]. 太阳能, 2021(6): 50-57. DOI:  10.19911/j.1003-0417.tyn20200522.01.

SHI T. Discussion on site selection and design points of general layout of PV power station above water [J]. Solar Energy, 2021(6): 50-57. DOI:  10.19911/j.1003-0417.tyn20200522.01.
[30] 王方毓. 水上太阳能光伏电站的技术特点及应用 [J]. 工程技术研究, 2017(10): 76-77. DOI:  10.19537/j.cnki.2096-2789.2017.10.044.

WANG F Y. Technical characteristics and application of water solar photovoltaic power station [J]. Engineering Technology Research, 2017(10): 76-77. DOI:  10.19537/j.cnki.2096-2789.2017.10.044.
[31]

BJØRNEKLETT B. Offshore floating solar-a technical perspective [N]. PV Tech Power, 2018-11-11.
[32]

TRAPANI K, MILLAR D L. The thin film flexible floating PV (T3F-PV) array: the concept and development of the prototype [J]. Renewable Energy, 2014, 71: 43-50. DOI:  10.1016/j.renene.2014.05.007.
[33]

CLAUS R, LÓPEZ M. Key issues in the design of floating photovoltaic structures for the marine environment [J]. Renewable and Sustainable Energy Reviews, 2022, 164: 112502. DOI:  10.1016/j.rser.2022.112502.
[34]

SAHU A K, SUDHAKAR K. Effect of UV exposure on bimodal HDPE floats for floating solar application [J]. Journal of Materials Research and Technology, 2019, 8(1): 147-156. DOI:  10.1016/j.jmrt.2017.10.002.
[35]

LEE T D, EBONG A U. A review of thin film solar cell technologies and challenges [J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1286-1297. DOI:  10.1016/j.rser.2016.12.028.
[36]

TRAPANI K, SANTAFÉ M R. A review of floating photovoltaic installations: 2007-2013 [J]. Progress in Photovoltaics:Research and Applications, 2015, 23(4): 524-532. DOI:  10.1002/pip.2466.
[37]

KOUGIAS I, SZABÓ S, MONFORTI-FERRARIO F, et al. A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems [J]. Renewable Energy, 2016, 87: 1023-1030. DOI:  10.1016/j.renene.2015.09.073.
[38]

SAHU A K, YADAV N, SUDHAKAR K. Floating photovoltaic power plant: a review [J]. Renewable and Sustainable Energy Reviews, 2016, 66: 815-824. DOI:  10.1016/J.RSER.2016.08.051.
[39]

XU P P, WELLENS P R. Theoretical analysis of nonlinear fluid-structure interaction between large-scale polymer offshore floating photovoltaics and waves [J]. Ocean Engineering, 2022, 249: 110829. DOI:  10.1016/j.oceaneng.2022.110829.
[40]

HELLER S R, ABRAMSON H N. Hydroelasticity: a new naval science [J]. Journal of the American Society for Naval Engineers, 2009, 71(2): 205-209. DOI:  10.1111/j.1559-3584.1959.tb02326.x.
[41]

BISHOP R E D, PRICE W G. Hydroelasticity of ships [M]. Cambridge: Cambridge University Press, 1979.
[42]

WU Y S, DING J, LI Z W, et al. Hydroelastic responses of VLFS deployed near islands and reefs [C]// Anon. ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. Trondheim, Norway: ASME, June 25, 2017. [s.l.]:[s.n.], 2017. DOI: 10.1115/OMAE2017-62680.
[43]

FU S X, MOAN T, CHEN X J, et al. Hydroelastic analysis of flexible floating interconnected structures [J]. Ocean Engineering, 2007, 34(11/12): 1516-1531. DOI:  10.1016/j.oceaneng.2007.01.003.
[44]

SENJANOVIĆ I, MALENICA Š, TOMAŠEVIĆ S. Investigation of ship hydroelasticity [J]. Ocean Engineering, 2008, 35(5/6): 523-535. DOI:  10.1016/j.oceaneng.2007.11.008.
[45]

KIM K H, BANG J S, KIM J H, et al. Fully coupled BEM-FEM analysis for ship hydroelasticity in waves [J]. Marine Structures, 2013, 33: 71-99. DOI:  10.1016/j.marstruc.2013.04.004.
[46]

DAS S, CHEUNG K F. Hydroelasticity of marine vessels advancing in a seaway [J]. Journal of Fluids and Structures, 2012, 34: 271-290. DOI:  10.1016/j.jfluidstructs.2012.05.015.
[47]

SETO H, OHTA M, OCHI M, et al. Integrated hydrodynamic-structural analysis of very large floating structures (VLFS) [J]. Marine Structures, 2005, 18(2): 181-200. DOI:  10.1016/j.marstruc.2005.07.008.
[48]

LU D, FU S X, ZHANG X T, et al. A method to estimate the hydroelastic behaviour of VLFS based on multi-rigid-body dynamics and beam bending [J]. Ships and Offshore Structures, 2019, 14(4): 354-362. DOI:  10.1080/17445302.2016.1186332.
[49]

BAKTI F P, JIN C, KIM M H. Practical approach of linear hydro-elasticity effect on vessel with forward speed in the frequency domain [J]. Journal of Fluids and Structures, 2021, 101: 103204. DOI:  10.1016/j.jfluidstructs.2020.103204.
[50]

JIN C, BAKTI F P, KIM M. Multi-floater-mooring coupled time-domain hydro-elastic analysis in regular and irregular waves [J]. Applied Ocean Research, 2020, 101: 102276. DOI:  10.1016/j.apor.2020.102276.
[51]

ZHANG X T, LU D, GAO Y, et al. A time domain discrete-module-beam-bending-based hydroelasticity method for the transient response of very large floating structures under unsteady external loads [J]. Ocean Engineering, 2018, 164: 332-349. DOI:  10.1016/j.oceaneng.2018.06.058.
[52] 李志海, 徐兴平, 王慧丽. 海洋平台系泊系统发展 [J]. 石油矿场机械, 2010, 39(5): 75-78. DOI:  10.3969/j.issn.1001-3482.2010.05.022.

LI Z H, XU X P, WANG H L. Development of offshore platform mooring systems [J]. Oil Field Equipment, 2010, 39(5): 75-78. DOI:  10.3969/j.issn.1001-3482.2010.05.022.
[53] 王言英, 肖越. 深水锚泊的新概念与新技术 [J]. 船舶工程, 2004(2): 1-3. DOI:  10.13788/j.cnki.cbgc.2004.02.001.

WANG Y Y, XIAO Y. New concept and technology of deepwater mooring system [J]. Ship Engineering, 2004(2): 1-3. DOI:  10.13788/j.cnki.cbgc.2004.02.001.
[54] 陆忠杰, 周国平. 深水锚系泊作业技术应用初探 [J]. 船舶设计通讯, 2011(增刊1): 67-72.

LU Z J, ZHOU G P. Preliminary study on the application of anchor mooring technique in deep water [J]. Journal of Ship Design, 2011(Supp. 1): 67-72.
[55]

LEHANE B M, GAVIN K G. Base resistance of jacked pipe piles in sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(6): 473-480. DOI:  10.1061/(ASCE)1090-0241(2001)127:6(473.
[56]

FU D F, ZHANG Y H, AAMODT K K, et al. A multi-spring model for monopile analysis in soft clays [J]. Marine Structures, 2020, 72: 102768. DOI:  10.1016/j.marstruc.2020.102768.
[57]

NG K W, SULEIMAN T M, SRITHARAN S. Pile setup in cohesive soil. II: analytical quantifications and design recommendations [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 210-222. DOI:  10.1061/(ASCE)GT.1943-5606.0000753.