• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Turn off MathJax
Article Contents

LI Tonglin. Strategies for Improving the Safety and Operational Reliability of High-Voltage Frequency Converters[J]. SOUTHERN ENERGY CONSTRUCTION. doi: 10.16516/j.gedi.issn2095-8676.****.**.***
Citation: LI Tonglin. Strategies for Improving the Safety and Operational Reliability of High-Voltage Frequency Converters[J]. SOUTHERN ENERGY CONSTRUCTION. doi: 10.16516/j.gedi.issn2095-8676.****.**.***

Strategies for Improving the Safety and Operational Reliability of High-Voltage Frequency Converters

doi: 10.16516/j.gedi.issn2095-8676.****.**.***
  • Received Date: 2023-07-05
  • Rev Recd Date: 2023-08-23
  • Available Online: 2023-09-05
  •   Introduction  "Energy saving and emission reduction" is the national technical requirement for industrial projects in recent years, and the frequency conversion technology can make process equipment adjust output under different working conditions, thereby saving resources. However, frequency converters are power electronic devices, and the failure rate of IGBT components is relatively high, and the requirements for the operating environment are harsh. Therefore, it is very important to improve the safety and operational reliability of high-voltage frequency converters.   Method  In the case of failure of individual power units of the high-voltage frequency converter, according to the neutral point drift technology, the position of the neutral point and the angle between the three-phase voltages are adjusted, so that the high-voltage frequency converter can bypass some faulty power units can still operate normally; Send the real-time status of the high-voltage inverter to the DCS, and realize the automatic bypass technology of the high-voltage inverter according to the logic configuration of the DCS; Set up a separate high-voltage inverter room to provide a relatively good operating environment for high-voltage inverters through air conditioning, ventilation, and air duct systems.   Result  After adopting the internal strategy and external environment strategy for the high-voltage inverter, the failure rate of the high-voltage inverter is reduced, and the safe operation time of the high-voltage inverter is prolonged.   Conclusion  The use of neutral point drift technology and the automatic bypass technology of the whole machine can reduce the failure probability and frequency of high-voltage inverters, and jointly improve the temperature and humidity conditions of the operating environment, which can increase the continuous and reliable operation time of the inverter, to greatly improve the safety and operation reliability of inverters.
  • [1] 王健声, 茆华风, 茆智伟, 等. 整流变压器偏磁对托卡马克电源系统谐波不稳定的分析 [J]. 南方能源建设, 2022, 9(2): 70-76. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.009.

    WANG J S, MAO H F, MAO Z W, et al. Analysis of harmonic instability of Tokamak power system caused by rectifier transformer bias [J]. Southern energy construction, 2022, 9(2): 70-76. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.009.
    [2] 彭立民. 浅析高压变频器在电厂中的应用 [J]. 科技展望, 2016, 26(14): 112. DOI:  10.3969/j.issn.1672-8289.2016.14.098.

    PENG L M. Analysis on the application of high voltage frequency converters in power plants [J]. Science and technology, 2016, 26(14): 112. DOI:  10.3969/j.issn.1672-8289.2016.14.098.
    [3] 饶恒. 做高质量发展的先行者 [J]. 国资报告, 2018, 37(1): 68-69.

    RAO H. To be the pioneer of high-quality development [J]. State-owned assets report, 2018, 37(1): 68-69.
    [4] 佚名. 中央经济工作会议在北京举行 [N]. 人民日报, 2017-12-21(01). (查阅网上资料, 未找到作者, 请确认)

    Anon. The Central Economic Work Conference was held in Beijing [N]. People's Daily, 2017-12-21(01). (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [5] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电工术语 发电、输电及配电 通用术语: GB/T 2900.50—2008 [S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Electrotechnical terminology-generation transmission and distribution of electricity-general: GB/T 2900.50—2008 [S]. Beijing: Standards Press of China, 2009.
    [6] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电工术语 发电、输电及配电 通用术语: GB/T 2900.50—2008 [S]. 北京: 中国标准出版社, 2009. (查阅网上资料, 本条文献与第5条重复, 请确认)

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Electrotechnical terminology-generation transmission and distribution of electricity-general: GB/T 2900.50—2008 [S]. Beijing: Standards Press of China, 2009.
    [7] 李晓迅. 高压变频器综述 [J]. 科技信息, 2010(8): 85-86. DOI:  10.3969/j.issn.1001-9960.2010.08.407.

    LI X X. A review of high-voltage inverters [J]. Science & technology information, 2010(8): 85-86. DOI:  10.3969/j.issn.1001-9960.2010.08.407.
    [8] 李方园. 变频器的故障排除第1讲变频器过压故障及案例分析 [J]. 自动化博览, 2009, 26(3): 42-44. DOI:  10.3969/j.issn.1003-0492.2009.03.014.

    LI F Y. AC Inveter's trouble shooting [J]. Automation panorama, 2009, 26(3): 42-44. DOI:  10.3969/j.issn.1003-0492.2009.03.014.
    [9] 车挺. 变频器的故障分析及日常维护措施 [J]. 化工管理, 2019, 532(25): 144,150. doi:  10.3969/j.issn.1008-4800.2019.25.086

    CHE T. Fault analysis and daily maintenance measures of inverter [J]. Chemical engineering management, 2019, 532(25): 144,150. doi:  10.3969/j.issn.1008-4800.2019.25.086
    [10] 胡刚, 吕卿. PLC-变频器控制系统典型故障分析 [J]. 交通标准化, 2011(16): 83-86. DOI:  10.3869/j.issn.1002-4786.2011.16.020.

    HU G, LV Q. Typical failure analysis of control system in PLC & frequency converter [J]. Communications standardization, 2011(16): 83-86. DOI:  10.3869/j.issn.1002-4786.2011.16.020.
    [11] 慕容永坚. 6kV风机变频器故障分析 [J]. 华电技术, 2012, 34(8): 37-39. DOI:  10.3969/j.issn.1674-1951.2012.08.012.

    MURONG Y J. Analysis on fault of frequency converter for 6 kV draft fan [J]. Huadian technology, 2012, 34(8): 37-39. DOI:  10.3969/j.issn.1674-1951.2012.08.012.
    [12] 李喜东, 朱明清, 石磊, 等. 变频器输出短路引起的过压故障分析 [J]. 自动化技术与应用, 2009, 28(3): 110-111,134. DOI:  10.3969/j.issn.1003-7241.2009.03.038.

    LI X D, ZHU M Q, SHI L, et al. Analysis of the overvoltage fault of the inverter [J]. Techniques of automation and applications, 2009, 28(3): 110-111,134. DOI:  10.3969/j.issn.1003-7241.2009.03.038.
    [13] 张林, 黄志刚, 陈雾. 一起三电平变频器直流过电压的处理与分析 [J]. 变频器世界, 2014(2): 75-77.

    ZHANG L, HUANG Z G, CHEN W. Once troubleshooting and analysis of 3-LEVEL converter DC-overvoltage [J]. The world of inverters, 2014(2): 75-77.
    [14] 石磊, 高振林, 郭猛. 变频器过电压故障分析处理 [J]. 电子技术与软件工程, 2018(19): 241.

    SHI L, GAO Z L, GUO M. Analysis and treatment of inverter overvoltage fault [J]. Electronic technology & software engineering, 2018(19): 241.
    [15] 赵曙伟. 一种电压源型高压变频器的检测方法研究 [J]. 电气传动, 2015, 45(9): 70-73. DOI:  10.3969/j.issn.1001-2095.2015.09.016.

    ZHAO S W. Study on detection method of voltage source high voltage converter [J]. Electric drive, 2015, 45(9): 70-73. DOI:  10.3969/j.issn.1001-2095.2015.09.016.
    [16] 汪云静, 孙国彬. 高压变频器事故分析与防范措施 [J]. 变频器世界, 2011(2): 77-79.

    WANG Y J, SUN G B. Accident analysis and prevention measures of high-voltage inverter [J]. The world of inverters, 2011(2): 77-79.
    [17] 熊莉. 高压变频器常见故障的处理及防范措施 [J]. 河北电力技术, 2016, 35(4): 59-62. DOI:  10.3969/j.issn.1001-9898.2016.04.019.

    XIONG L. Treatment and prevention measures for common faults of high voltage frequency converter [J]. Hebei electric power, 2016, 35(4): 59-62. DOI:  10.3969/j.issn.1001-9898.2016.04.019.
    [18] 张华强, 王新生, 李鑫. 基于小波变换的TWERD变频器故障诊断研究 [J]. 微电机, 2011, 44(3): 58-62. DOI:  10.3969/j.issn.1001-6848.2011.03.014.

    ZHANG H Q, WANG X S, LI X. Fault diagnosis research of TWERD frequency converter based on wavelet transform [J]. Micromotors, 2011, 44(3): 58-62. DOI:  10.3969/j.issn.1001-6848.2011.03.014.
    [19] 赵毅斌. 基于因子分析的变频器故障诊断 [J]. 电气应用, 2011, 30(11): 72-74.

    ZHAO Y B. Fault diagnosis of inverter based on factor analysis [J]. Electrotechnical application, 2011, 30(11): 72-74.
    [20] 朱大奇, 于盛林. 基于知识的故障诊断方法综述 [J]. 安徽工业大学学报, 2002, 19(3): 197-204.

    ZHU D Q, YU S L. Survey of knowledge-based fault dia gnosis methods [J]. Journal of Anhui university of technology, 2002, 19(3): 197-204.
    [21] 孟东东, 张新. 基于Labview的采煤机变频器故障诊断系统 [J]. 煤矿机械, 2008, 29(1): 182-183. DOI:  10.3969/j.issn.1003-0794.2008.01.077.

    MENG D D, ZHANG X. Fault diagnosis system of coal shearer frequency converter based on labview [J]. Coal mine machinery, 2008, 29(1): 182-183. DOI:  10.3969/j.issn.1003-0794.2008.01.077.
    [22] 王孟莲, 龙飞. 基于人工神经网络的整流电路故障诊断 [J]. 武汉理工大学学报(交通科学与工程版), 2013, 37(3): 578-580. DOI:  10.3963/j.issn.2095-3844.2013.03.031.

    WANG M L, LONG F. Fault diagnosis of rectifying circuit using ANN [J]. Journal of Wuhan university of technology (transportation science & engineering), 2013, 37(3): 578-580. DOI:  10.3963/j.issn.2095-3844.2013.03.031.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(3)

Article Metrics

Article views(48) PDF downloads(8) Cited by()

Related

Strategies for Improving the Safety and Operational Reliability of High-Voltage Frequency Converters

doi: 10.16516/j.gedi.issn2095-8676.****.**.***

Abstract:   Introduction  "Energy saving and emission reduction" is the national technical requirement for industrial projects in recent years, and the frequency conversion technology can make process equipment adjust output under different working conditions, thereby saving resources. However, frequency converters are power electronic devices, and the failure rate of IGBT components is relatively high, and the requirements for the operating environment are harsh. Therefore, it is very important to improve the safety and operational reliability of high-voltage frequency converters.   Method  In the case of failure of individual power units of the high-voltage frequency converter, according to the neutral point drift technology, the position of the neutral point and the angle between the three-phase voltages are adjusted, so that the high-voltage frequency converter can bypass some faulty power units can still operate normally; Send the real-time status of the high-voltage inverter to the DCS, and realize the automatic bypass technology of the high-voltage inverter according to the logic configuration of the DCS; Set up a separate high-voltage inverter room to provide a relatively good operating environment for high-voltage inverters through air conditioning, ventilation, and air duct systems.   Result  After adopting the internal strategy and external environment strategy for the high-voltage inverter, the failure rate of the high-voltage inverter is reduced, and the safe operation time of the high-voltage inverter is prolonged.   Conclusion  The use of neutral point drift technology and the automatic bypass technology of the whole machine can reduce the failure probability and frequency of high-voltage inverters, and jointly improve the temperature and humidity conditions of the operating environment, which can increase the continuous and reliable operation time of the inverter, to greatly improve the safety and operation reliability of inverters.

LI Tonglin. Strategies for Improving the Safety and Operational Reliability of High-Voltage Frequency Converters[J]. SOUTHERN ENERGY CONSTRUCTION. doi: 10.16516/j.gedi.issn2095-8676.****.**.***
Citation: LI Tonglin. Strategies for Improving the Safety and Operational Reliability of High-Voltage Frequency Converters[J]. SOUTHERN ENERGY CONSTRUCTION. doi: 10.16516/j.gedi.issn2095-8676.****.**.***
    • 近些年来,我国的发电厂发展迅速[1-2],在发展大型煤电厂作为电力“兜底保障”的同时,也在大力发展燃机电厂及风电、光伏等新能源发电厂,形成了蓬勃发展的电力市场[3]。随着“双碳”概念的提出,发电厂的节能环保要求,也迈向了一个新的高度。为了评价节能环保效果,厂用电率的大小成为衡量发电厂经济、适用、环保性能的一个重要指标[4-5]。不同季节、不同工况下部分工艺设备的运行需求存在较大差别,因此需要采用变频技术,针对工艺设备的运行使用要求来采取合理的调速方式,进而控制工艺设备的出力使其和工艺的实时需求相匹配,避免不必要的资源浪费,降低厂用电率,为发电厂的“节能减排”贡献一份力量。

      但由于变频设备为电力电子设备,其核心部件为IGBT元件[6],因此其本身的设备安全性与可靠性比传统的电力设备相对逊色[7],并且电力电子元件对运行环境的要求较高,因此必须采取一定的措施以提高变频器安全性和运行可靠性[8-10]

      笔者通过阅读相关文献,发现大多数相关文献均是以电厂实例出发,针对电厂实际遇到变频器运行问题,提出具体解决措施,如清洁模数块、检查变频器螺栓是否松动、定期清洗过滤网、定期更换电源模块等,实践应用效果很好,但缺乏对变频器发生外在故障的内部原因进行理论分析。因此本文通过系统分析引起高压变频器故障、寿命缩短的原因,从内部策略和外部策略两个方面,提出解决措施。

    • 变频技术是将交流电通过整流逆变后,改变交流电频率的一种电力电子技术[11]。变频器是利用变频技术,改变电机的转速,进而改变工艺设备的转速,以用来调节工艺设备出力的一种设备[12-13]。变频器按电压等级可以分为低压变频器和高压变频器。其中高压变频器由于变频器本体庞大、IGBT元件较多,容易出现故障问题[14];一旦停运对电厂的安全运行影响很大,因此提高高压变频器的安全性和运行可靠性十分重要[15]

      变频技术在发电厂中应用十分广泛,以传统火电为例,凝结水泵采用变频调速方式已经成为行业主流配置方式[16-17]。一些电厂的闭式水泵、低加疏水泵、循环水泵等也采用变频方式,其中凝结水泵由于配置方式常为一用一备,因此采用一台变频器拖动两台工艺设备的配置十分常见,即“一拖二”配置方式;而循环水泵由于循环水多采用母管制,因此全厂的循环水泵多采用公用配置方式,而非机组配置方式,配置的几台循环水泵存在同时运行的工况,因此循环水泵多采用一台变频器拖动一台工艺设备的方式,即“一拖一”配置方式。

    • 以凝结水泵为例,发电厂工艺设备采用变频调试方式的优势主要有:

      1)实现“节能减排”[18]。由于凝结水流速的变化和凝结水泵发出的功率呈线性关系,因此通过调整凝结水泵的输出功率,可以调节凝结水的流量,以适应不同季节、工况的工艺需求;

      2)提高系统稳定性。采用变频调速方式,可以实现凝结水流量和压力的协调控制[19-20],使工艺流程更加协调,提高凝结水系统稳定性;

      3)延长工艺设备的自然寿命。采用变频技术可以调整凝结水系统的流量,大部分工况下均为降低流量运行,降低流量可以减少水流对设备和叶轮的冲击,减少设备的磨损,因此可以提高工艺设备运行的自然使用寿命。

    • 变频技术的出现及应用,帮助发电厂解决了一些技术问题,但由于变频器为电力电子器件,其运行可靠性相对较低[21]。已投运发电厂的变频器在运行过程中容易发生故障,降低了电厂的运行可靠性。以已投运的S电厂为例,此电厂共设有高压变频器10台,其中“一拖二”高压变频器6台,“一拖一”高压变频器4台,电压等级采用10 kV。笔者统计了其半年时间内各种类型的故障发生频次,其中故障类型包括功率单元故障、变频装置过温受潮、电源故障及其他故障,总故障频次为16次,平均一个月发生3次左右大大小小的高压变频器故障,其中变频器本身功率单元的问题占70%左右,运行环境(如潮湿等)造成的变频系统故障占30%左右。由此可见,提高变频器本体的功率单元的可靠性及提高运行环境的舒适度,对提高变频器的无故障运行持续时间十分重要[22]

    • 高压变频器主要由三大部分组成:功率单元、移相变压器和变频器自身的控制系统。这三大部分中,功率单元为IGBT元件,故障率也较高。

    • 目前,高压变频器多采用功率单元串联多电平的技术,以6 kV为例,每相采用5个功率单元串联组成,其拓扑结构图如图1所示,每个功率单元可以看成是1个690 V的电源,则每一相电压为3450 V(5个690 V电源串联),在每相夹角为120°的情况下,线电压为相电压的1.732倍,约为6000 V。

      Figure 1.  The system diagram of 6 kV inverter power unit

      由于功率单元为IGBT元件,其设备本身的安全稳定性较一般的电力设备低,且在传统的高压变频器中,某功率单元发生故障(以图1的A4、A5为例),与故障单元在同一相的其余正常工作单元(A1-A3)将会承受更大的电压,会造成IGBT元件发热增加,长时间运行下去,将会损坏IGBT元件。

    • 为了解决上述问题,我们引入了自动旁路掉故障单元的中性点漂移技术。所谓中性点漂移技术,是指旁路掉故障功率单元后,变频器控制后台将以A点为圆心,以A相的残留电压为半径,和以B、C为圆心,以3450 V为半径画圆的交点为新中性点,通过调整中性点的位置以及故障相和正常相之间的夹角,控制线电压保持6000 V不变,在新的平衡下继续运行,以尽量降低个别故障单元发生故障后对变频器设备造成的影响。待新的平衡后,系统图如图2所示。

      Figure 2.  The system diagram of 6 kV inverter power unit behind bypass fault power unit

      找寻新的中性点的过程将由变频器的控制系统完成,变频器的控制系统实时监测ABC三相电压,当其中一相有电压变化时,控制系统可以根据新的ABC三相电压,利用三角函数原理和矢量计算,通过调整相之间的夹角,保持输出线电压保持不变。控制系统并将发出报警信号,提醒运维人员A4、A5功率单元的故障状况,让运维人员了解到功率单元的实时状态,以便及时采取措施。

    • 以“一拖二”变频器为例,传统项目的主回路示意图如图3所示。

      Figure 3.  The main circuit schematic diagram of the one driven two frequency conversion scheme

      其主要工作逻辑如下: 输入电源为6 kV、50 Hz,用于对电动机进行调速。两台泵互为备用。正常运行时选择其中任意一台电机为变频方式,另一台为工频方式。

      基本原理: 图中K1,K2,K3,K4为隔离刀闸,其中K1与K3相互闭锁,K2与K4相互闭锁,K1与K4相互闭锁,K2与K3相互闭锁。

      一般有三种工作状态,具体如下:

      (1)M1处于变频状态,M2处于工频状态:即K1闭合,K2处于变频位置,K3断开,K4处于工频位置;

      (2)M2处于变频状态,M1处于工频状态:即K3闭合,K4处于变频位置,K1断开,K2处于工频位置;

      (3)M1处于工频备用状态,M2处于工频状态:即K1,K3断开,K2,K4处于工频位置。

      旁路柜是第1种工作状态时,当变频器出现故障时,变频器联跳M1高压进线开关QF1,DCS根据M1高压进线开关QF1的状态合闸M2高压进线开关QF2,联起M2,从而转换到M2的工频运行。

      旁路柜是第2种工作状态时,当变频器出现故障时,变频器联跳M2高压进线开关QF2,DCS根据M2高压进线开关的状态合闸M1高压进线开关QF1,联起M1,从而转换到M1的工频运行。

      旁路柜是第3种工作状态时,当需要由工频运行切回到变频运行时,如M1在工频运行状态,则断开M1高压进线开关QF1、合上K1、将K2转换到变频位置,然后再合上M1高压进线开关QF1,启动变频器,M1变频运行。如M2在工频运行状态,则断开M2高压进线开关QF2、合上K3、将K4转换到变频位置,然后再合上M2高压进线开关QF2,启动变频器,M2变频运行。

      当某个相上较多的功率单元发生问题、移相变压器等遇到故障,变频器需要退出时,可以通过在DCS做逻辑,在第1种或第2种运行状态下,自动切换到工频运行状态,以满足工艺需求。电厂运维人员及时检查变频器状况,尽快维修,以便尽快恢复变频器的使用。

    • 由于IGBT元件对运行环境要求的严苛性,改善变频器的工作环境,对提高变频器的运行安全性十分重要。

    • 由于功率单元、移相变压器、控制系统等对温度的敏感性很高,IGBT元件在正常运行时会产生热量,通过散热器进行散热,但过高的环境温度会使IGBT元件和散热器之间存在较大的温差,因此会产生热应力,对IGBT元件的正常运行产生较大的隐患,因此必须采取措施稳定变频器室的温度。

      1)变频器屏柜中需安装风机,对变频器中的热敏感元件进行物理降温。

      2)由于变频器柜发热严重,因此可以安装专用的变频风道,将设备产生的大量热量直接通过风道排向室外,以减少室内的温升。同时还需在风道的出风口对面开几个进风口,以保证变频器室内压力的恒定。

      3)装设空调系统,并采用冗余电源配置方案,以提高空调系统运行的可靠性和稳定性,减少因空调故障或空调电源消失导致变频器室内温度超标。

    • 由于水是良好的导体,当环境中湿度变大时,空气中的水蒸气会附着在IGBT元件的表面,凝结成小水珠,形成导电通路,可能造成设备的短路,因此湿润的环境可以增大空气击穿以及短路的风险,且根据S电厂的运行经验,空气湿润对变频器故障的发生影响很大,因此必须采取措施控制变频器室的湿度。

      1)提高变频器室的防水及排水能力,避免房间发生漏雨、漏水现象。

      2)对电缆通道应防堵严密,避免水通过电缆通道流入室内。

      3)空调系统应有抽湿功能,可以调节室内的干湿度。

      4)变频器室应封闭良好,尽量减少外界湿气的进入。

      5)对设备空间进行金属阻锈防腐。

    • 本文通过调查S电厂高压变频器运行期间故障率的分布情况,总结出变频器高故障率的几大影响因素,并逐个分析其对变频器的影响。针对变频器内部影响因素提出了中性点漂移方法及DCS逻辑自动旁路控制的策略,并提出稳定变频器室温度、湿度控制的方法,为提高发电厂中的变频器的安全性和运行可靠性提供依据。

Reference (22)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return