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Sub-Synchronous Oscillation Suppression Based on VSG Virtual Impedance

Feasible Domains
SUN Yuxin, SUN Qin™, DU Yi
(School of Electrical Information Engineering, Jiangsu University, Zhenjiang 201013, Jiangsu, China)

Abstract: [Objective] The virtual synchronous generator (VSG) system exhibits negative damping characteristics under weak grid
connection, which triggers subsynchronous oscillations and leads to system instability. The virtual impedance can effectively suppress the
sub-synchronous oscillations, but different parameter values result in varying suppression effects. [Method] To address this problem, this
paper proposed a feasible domain determination method for adding virtual impedance on the grid side to suppress the subsynchronous
oscillations. Taking the direct-drive permanent magnet wind power system with VSG control as an example, the suppression mechanism
was analyzed through amplitude, phase angle, and electrical vectors associated with electrical resonance. Virtual impedance was
introduced to alter the system's impedance characteristics, and a VSG sequence impedance model was established. The feasible domain
of the virtual impedance was then determined under the constraints of output power and system stability. [Result] The effectiveness and
validity of the feasible domain were verified through MATLAB/SIMULINK simulations by selecting different virtual impedance values
and observing voltage, current, power and frequency responses. The simulation results demonstrate that introducing virtual impedance
at the grid side can effectively suppress subsynchronous oscillations under weak grid conditions. Moreover, better suppression is
achieved when the virtual inductance is relatively large and the virtual resistance is relatively small within the feasible domain.

[Conclusion] Under weak grid conditions, ensuring that the virtual impedance lies within the feasible domain can provide sufficient
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power output capability and suppress subsynchronous oscillations, thereby guaranteeing stable system operation.
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Fig.1 Grid-connected topology of direct-drive wind turbine
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Fig. 5 Control diagram of grid-side virtual impedance
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