2% HS5H mAEREIG Vol. 12 No. 5
2025 4E 9 f SOUTHERN ENERGY CONSTRUCTION Sept. 2025

frequency optimization control strategy for desulfurization slurry circulation pumps based on NSGA-II [J]. Southern energy construction, 2025, 12(5): 165-174.
DOI: 10.16516/j.ceec.2025-076.

)

4

BT NSGA- Il BB i 5% R 1B R IR 112 5l SR B

TR, BAER"

Chrizar e db & K 2 A TR ), #iT T 315800)

WE: BN BN AR R AEIK R, BARESRARKGRALETF L LT NT @l HIRR LS,
BLALF HA R R o SO, iR A KA AN Fhesk, LFERE—FBARGAARTNIEFG L AR RKALESL, §
BERIABARAE, BATRASFRAGIRE AT H, [FFERIRE T — K T NSGA- 11 4955 5L bk 5 ik A vk b Bl 45 4
TE. BITUABITARA (RAVH. AN EHA) ®R 0L, B2 SO, REEA R D AHGFTEARAZS BIRE S
BARMEALAE A, Bid NSGA-I A9 HE LM HEAF SMFEMH, HEARKBRREMARE B RERRAE, £RME
HRABE, FATIEMBERELELAHK., [ERIZAEASAEAN: FIRFEFEA/TERFTRFAIALT, TEALXK
BAEFRR BN R RAAGHE PR, £E6, SERRBFARFA DD EER21.7%, FTHEE 13357 1;
B AT AL T 4 26.7%. [ERIFAXARA KX BETHAEZAS T EBMEENSINERHLENES, REHRKTE
FRAFRSTIHRMR, TAHME R RIREFEAIT H5ARMHA B3GR ETH LR KGR, difzhiBk
JB A BT 6 AL BB B TAZ 5 KA

RERIE: TS RRAIRR; SR AMA: NSGA-11: 4Hik; kAt
DOI: 10.16516/j.ceec.2025-076 XEHS: 2095-8676(2025)05-0165-10
CSTR: 32391.14.j.ceec.2025-076 FESHES: TM611; TM621

IEX 4

Variable Frequency Optimization Control Strategy for Desulfurization Slurry
Circulation Pumps Based on NSGA-II

DING Le, YU Shijie™
(Zhejiang Zheneng Beilun Power Generation Co., Ltd., Ningbo 315800, Zhejiang, China)

Abstract: [Objective] To address the challenges in the desulfurization systems of coal-fired power units: such as high energy
consumption of circulation pumps, excessive desulfurizing agent usage, and severe fluctuations in outlet SO, concentration under
complex operating conditions like low loads, high-sulfur coal co-firing, and tightening environmental constraints: this paper proposes a
multi-objective cooperative optimization strategy for the variable frequency control of slurry circulation pumps. The strategy aims to
achieve an optimal balance among desulfurization efficiency, operational costs, and environmental indicators. [Method] A calcium-to-
sulfur (Ca/S) ratio and liquid-to-gas (L/G) ratio intelligent cooperative control scheme based on the NSGA- Il was proposed. A multi-
objective optimization model was established to minimize operational costs (pump energy consumption and desulfurizing agent usage),
reduce outlet SO, concentration fluctuations, and ensure emission compliance. Leveraging NSGA-II's non-dominated sorting and
crowding distance mechanisms, the frequency conversion parameters of recirculation pumps and limestone slurry flow rates were
dynamically optimized to generate a Pareto-optimal solution set. Algorithm parameters were validated using engineering data.
[Result] Engineering applications demonstrate that the proposed method achieves balanced allocation of slurry circulation pump output
and slurry consumption under load-increasing/decreasing and steady-state conditions. After implementation, the average hourly power

consumption of five slurry circulation pumps was reduced by 21.7%, yielding annual electricity cost savings of 1.335 million CNY. The
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unit powder consumption decreased by 26.7%. [Conclusion] The research effectively addresses the challenges of strong multivariable

coupling and poor adaptability to dynamic conditions in desulfurization systems, significantly reducing operational costs while enhancing

environmental performance. It provides a valuable technical pathway for coal-fired power units to achieve synergistic optimization of

economic operation and ultra-low emissions, holding significant engineering value for promoting the intelligent upgrading of the wet flue

gas desulfurization process.

Key words: variable frequency control; slurry circulation pump; wet flue gas desulfurization; NSGA- I ; calcium-to-sulfur ratio; liquid-

to-gas ratio
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