DOI: 10.16516/j. gedi. issn2095-8676.2015.04.024

基于 Hermite 插值法的板型燃料不对称冷却计算

陈章隆

(中国核电工程有限公司,北京,100840)

摘要:通过Hermite 插值积分理论列出积分平均值与边界条件的关系,进而建立板型燃料芯体及其左右包壳的导热方程,利用 Fortran 科学计算语言对所建立的数学模型编译求解程序。将求解程序加入到反应堆热工水力实时仿真程序 THEATRe 中进行不对称冷却问题的计算,并对 THEATRe 程序的输入卡进行修改。通过计算中国先进研究堆(CARR) 的标准燃料组件和跟随体燃料组件的稳态温度分布,与现有参考结果进行对比验证求解程序的正确性。最后模拟分析 板型燃料组件流道堵塞事故。

关键词:板状燃料;Hermite 插值积分;不对称冷却 中图分类号:TL352 文献标志码:A 文章编号:2095-8676(2015)04-0132-06

Asymmetrical Cooling Calculation of a Plate-type Fuel Reactor Based on Hermite Interpolation Method

CHEN Zhanglong

(China Nuclear Power Engineering Co., Ltd., Beijing 100840, China)

Abstract: This paper through the integration of the Hermite interpolation theory of integral average relationship with the boundary conditions, build the plate type fuel pellets and the heat conduction equation of cladding, Use of the Fortran compiler to solve the mathematical model is established. Add the solver to reactor thermohydraulic asymmetrically cooling problems in real-time simulation program calculation by THEATRe, Modify the program input card. By calculating the steady state of in standard fuel assembly and follower fuel assembly distribution of temperature in CARR, Compared with the results in the literature to prove the validity of the program. Finally simulated plate type fuel assembly flow blockage accident.

Key words: slab fuel; hermite; asymmetrical cooling

核反应堆的燃料组件结构繁多,在这些结构中 由多块矩形燃料板平行排列而成的板状燃料组件在 核反应堆中有一定的应用。因为板状燃料组件的结 构特殊,不同于一般的燃料棒,所以成为了工程技 术人员研究的热点。相比于棒状燃料组件,板状燃 料元件组件有着以下特点:结构紧凑,传热好,燃 料芯体温度低,燃耗高,具有较高释热率和换热效 率,从而可以大幅度提高堆芯的功率体积比。板状 燃料组件的这些特点令较小体积的反应堆可以提供 较高的堆功率,能够满足人们对动力装置与设备小 型化的要求。也正是因为这些特点,板状燃料组件 在一体化反应堆与教学、培训、实验等用途的实验 研究堆中有着极大的应用。

由于现有的 THEATRe 程序没有考虑板型燃料 两侧的不对称冷却情况,这在实际的仿真中不能完 全模拟出实际的堆芯热工水力条件,本文的研究可 以更准确的分析不对称冷却条件下板型燃料元件的 温度分布。

1 板型燃料的模型建立

由于设计尺寸不同或加工精度的偏差,组件内 部冷却剂通道缝隙宽度可能是不一致的;或者由于 燃料辐照肿胀起泡、燃料表面结垢、堆内材料碎片 进入等原因导致某个流道堵塞。使得燃料板两侧热

收稿日期: 2015-10-18

作者简介:陈章隆(1992),男,北京市人,工程师,学士,主要从 事核电厂总体设计工作(e-mail)chenzl@cnpe.cc。

工水力条件不同,两侧冷却剂冷却燃料板能力不同,这样燃料最高温度就不在燃料几何中心线上,此时即为不对称冷却。而现在的仿真程序没有考虑燃料元件两侧的不对称冷却情况,这在实际的仿真中不能完全模拟出实际的堆芯情况。不对称冷却问题的难点在于燃料最高温度的位置难以确定,不能通过直接积分得到燃料芯块平均温度与燃料内部各界面温度的关系式。本文利用 Hermite 插值积分,给出边界条件和积分平均值之间的关系,提出了一种改进的集总参数模型来求解板状燃料元件不对称冷却问题。

对[a, b]区间上的连续函数f(x), Hermite 两 点插值积分表达式为:

*H*_{0,0}近似:

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^{2}}{12} [f'(a) - f'(b)]$$
(1)

H_{1.1}近似:

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} [f(a) + f(b)]$$
 (2)

1.1 板型燃料基本结构

燃料芯块内裂变释放出来的热量经导热传给燃料包壳,再由对流换热通过包壳传给冷却剂。图1 是板状燃料元件导热示意图。燃料芯块厚度为δ_u, 燃料包壳厚度为δ_c。由于燃料元件一般为长而薄的 平板,轴向导热热阻要远大于横向导热热阻,因此 可以忽略其轴向导热,仅考虑横向导热,因此可以 用一维瞬态热传导方程求解燃料温度。

Fig. 1 Distribution of Temperature in Plate Type Fuel Pellet

对于燃料芯块有:

$$(\rho c_p)_u \frac{\partial T_u}{\partial t} = \lambda_u \frac{\partial^2 T_u}{\partial x^2} + q_u^m \qquad (3)$$

对于燃料包壳有:

$$(\rho c_p)_c \frac{\partial T_c}{\partial t} = \lambda_c \frac{\partial^2 T_c}{\partial x^2}$$
(4)

式中: ρ 为密度, kg/m³; c_p 为比热容, J/kg・K; λ 为热导率, W/(m・K); q_u^m 为燃料芯块功率密 度, W/m³。

板状燃料芯块和包壳之间不存在气隙,在这里 假设芯块和包壳压实紧密接触,两者之间没有接触 热阻。则包壳内表面和燃料芯块之间为连续性边界 条件:

左侧:

$$\left(\lambda \left. \frac{\partial T}{\partial x} \right|_{\delta c} \right)_{n} = \left(\lambda \left. \frac{\partial T}{\partial x} \right|_{\delta c} \right)_{c} \, \operatorname{All} \, T_{c} \left|_{x = \delta_{c}} = T_{u} \left|_{x = \delta_{c}^{+}} = T_{cir} \right|_{(5)}$$

右侧:

$$\left(\lambda \left. \frac{\partial T}{\partial x} \right|_{\delta c + \delta n}\right)_{n} = \left(\lambda \left. \frac{\partial T}{\partial x} \right|_{\delta c + \delta n}\right)_{c}$$

式中: T_{cil} 为燃料包壳左侧内表面温度,K; T_{cir} 为燃料包壳右侧内表面温度,K。

包壳外表面和冷却剂之间为第三类边界条件: 左侧:

$$\lambda_{c} \frac{\partial T}{\partial x} \Big|_{0} = h_{1} (T_{col} - T_{fl})$$
(7)

右侧:

$$-\lambda_{c} \frac{\partial T}{\partial x}\Big|_{2\delta_{c}+\delta_{n}} = h_{r}(T_{cor} - T_{fr})$$
(8)

式中: *T_{col}*为燃料包壳左侧外表面温度, K; *T_{cor}*为 燃料包壳右侧外表面温度, K; *T_n*为燃料包壳左侧 冷却剂温度, K; *T_f*为燃料包壳右侧冷却剂温度, K。

1.2 板型燃料不对称冷却问题分析

利用 Hermite 两点插值积分表达式即可给出温 度平均值、边界热流密度和温度之间的关系。

计算时做如下假设:

1)忽略燃料轴向导热, 仅考虑横向导热。

2)燃料芯块的热物性取决于芯块的平均温度,
 燃料包壳的热物性取决于包壳的平均温度。

3) 芯块温度分布用二次曲线近似,包壳内温度

分布用直线近似。

4)包壳和芯块紧密结合在一起,中间没有气隙。

采用 H_{1.1}近似计算燃料芯块的积分平均温度:

$$T_{n} = \frac{1}{\delta_{n}} \int_{\delta_{c}}^{\delta_{c}+\delta_{n}} T_{n} = \frac{1}{2} (T_{cil} + T_{cir}) + \frac{\delta_{n}}{12} (\frac{\partial T}{\partial x} \Big|_{\delta c} - \frac{\partial T}{\partial x} \Big|_{\delta c+\delta u})_{n}$$

$$(9)$$

采用 H_{0,0}近似计算燃料包壳积分平均温度和积 分平均热流密度:

$$\overline{T}_{cl} = \frac{1}{2} (T_{cil} + T_{col})$$
(10)

$$\overline{T}_{cr} = \frac{1}{2} (T_{cir} + T_{cor})$$
(11)

$$\int_{\delta_c}^{\delta_c + \delta_n} \frac{\partial T}{\partial x} dx = T_{cir} - T_{cil} = \frac{\delta_u}{2} \left(\frac{\partial T}{\partial x} \bigg|_{\delta_c} + \frac{\partial T}{\partial x} \bigg|_{\delta_c + \delta_u} \right)_n$$
(12)

$$\int_{o}^{\delta_{c}} \frac{\partial T}{\partial x} dx = T_{cil} - T_{cil} = \frac{\delta_{c}}{2} \left(\frac{\partial T}{\partial x} \bigg|_{\delta_{c}} + \frac{\partial T}{\partial x} \bigg|_{o} \right)_{c} \quad (13)$$

$$\int_{\delta_{c}\mathfrak{G}_{n}}^{2\delta_{c}\delta_{n}} \frac{\partial T}{\partial x} dx = T_{cir} - T_{cir} = \frac{\delta_{c}}{2} \left(\frac{\partial T}{\partial x} \bigg|_{2\delta_{c}\mathfrak{G}_{n}} + \frac{\partial T}{\partial x} \bigg|_{\delta_{c}\mathfrak{G}_{u}} \right)_{c} \quad (14)$$

对导热方程燃料芯块和燃料包壳在空间坐标进 行积分,并应用边界条件(5)~(7)同时代入式(2) 、式(10)~式(13),可以得到燃料芯块、左侧包 壳和右侧包壳平均温度的微分方程:

$$(pc_{p})_{u}\delta_{u}\frac{dT_{u}}{dt} = \lambda_{u}\left(\frac{\partial}{\partial x}\right|_{\delta_{c}+\delta_{u}} - \frac{\partial}{\partial x}\right|_{\delta_{c}})_{u} + q_{u}^{m}\delta_{u}$$

$$= \lambda_{u}\frac{6}{\delta_{u}}\left(-2T_{u} + T_{cil} + T_{cir}\right) + q_{u}^{m}\delta_{u} \quad (15)$$

$$(pc_{p})_{c}\delta_{c}\frac{dT_{d}}{dt} = \lambda_{c}\left(\frac{\partial}{\partial x}\right|_{\delta_{c}} - \frac{\partial}{\partial x}\right|_{0})_{c}$$

$$= \lambda_{u}\frac{2}{\delta_{u}}\left(3T_{u}-2T_{cil}-T_{cir}\right) - h_{1}\left(T_{col}-T_{y}\right) \quad (16)$$

$$(pc_{p})_{c}\delta_{c}\frac{dT_{cr}}{dt} = \lambda_{c}\left(\frac{\partial}{\partial x}\right|_{2\delta_{c}+\delta_{u}} - \frac{\partial}{\partial x}\right|_{\delta_{c}+}\delta_{u})_{c}$$

$$= \lambda_{u} \frac{2}{\delta_{u}} (3T_{u} - 2T_{cir} - T_{cil}) - h_{r} (T_{cor} - T_{y}) \quad (17)$$

联立方程可得:

$$T_{col} + T_{cil} = 2T_{cl} \tag{18}$$

$$T_{cor} + T_{cir} = 2T_{cr} \tag{19}$$

 $(1+2A_{l})T_{cil}+A_{l}T_{cir}-(1+B_{l})T_{col}=3A_{l}T_{n}-B_{l}T_{g}$ (20)

$$(1+2A_r)T_{cir}+A_rT_{cil}-(1+B_r)T_{cor}=3A_rT_n-B_rT_y$$
(21)

式中: $A_l = \frac{\delta_c}{\delta_u} \frac{\lambda_{cl}}{\lambda_u}, A_r = \frac{\delta_c}{\delta_u} \frac{\lambda_{cr}}{\lambda_u}, B_l = \frac{\delta_c}{2} \frac{h_l}{\lambda_{cl}}, B_r = \frac{\delta_c}{2} \frac{h_r}{\lambda_{cr}}$ 。 求解方程(17) ~式(21)即可求得燃料内部各 界面温度。若假设燃料芯块内温度分布为二次曲线 形式 $T_u = ax^2 + bx + c$,则可根据 δ_c 和 $\delta_c + \delta_c$ 处温度

和执流密度值、求出燃料最高温度和所在位置。

2 基于 THEATRe 程序的计算

为了研究中国先进研究堆燃料组件仿真,首先 需要建立起反应堆板状燃料组件的仿真模型,根据 仿真结果的需求选取了美国 GSE 公司开发的核动力 装置热工水力仿真软件 THEATRe(Thermal Hydraulic Engineering Analysis Tools in Real Time)程序是由美 国 GSE 公司开发的反应堆热工水力实时仿真分析工 具。将所编写的 FORTRAN 算法程序移植到 THEA-TRe 仿真软件中,准备填写 CARR 堆的输入卡。

中国先进研究堆(CARR)是我国自主设计和建造的一座多用途、高性能研究反应堆。其堆芯由17个几何结构相同的标准燃料组件(编号1~17)和4个几何结构相同的标准燃料组件平行排列了21块燃料 (4)构成。其中标准燃料组件平行排列了21块燃料板,从燃料组件左右外侧向内侧开始冷却剂流道间隙不同,从左右外侧开始间隙分别为1.56 mm、2.59 mm、2.45 mm、2.32 mm,其余冷却剂通道间隙都为2 mm。跟随体燃料组件平行排列了17块燃料板,除了最外侧冷却剂通道间隙为3.94 mm, 其余间隙通道都为2.25 mm。根据 CARR 的结构与功率份额参数结合以上数据填写 THEATRe 程序的输入卡。

3 数值计算结果及分析

利用所编制程序计算 CARR 堆稳态工况下,各 燃料组件间流量分配、燃料组件内流量分配问题和 组件内部温度场分布。计算时每个燃料组件划分为 一个通道,每个冷却剂通道轴向上均匀划分为17 个控制体。

3.1 CARR 额定运行工况下稳态仿真结果

在计算标准燃料组件选择组件9,跟随体燃料 组件选择组件18,在计算时假设组件内燃料径向功 率均匀分布。

3.1.1 流量分配计算结果

图 2 和图 3 分别给出了 CARR 中标准燃料组件

和跟随体燃料组件内部流量分配计算结果,计算中标准燃料组件选择组件9,跟随体燃料组件选择组件18,在计算时假设组件内燃料径向功率均匀分布。从计算结果可以看出,流量分配主要受流道的尺寸影响,间隙宽的流道,冷却剂流量分配份额较大。从图中还可以看出本文计算结果和现有参考结果符合较好。

Fig. 2 Core Fuel Position Arrangement of CARR

表 1	标准体组件冷却剂计算结果比较
-----	----------------

Table 1 Stangard Fuel Components Coolant Calculation Results

流道编号	冷却剂最高温度/℃		
	本文计算结果	现有参考结果	
1	53.97	51.21	
2	55.14	54.96	
3	56.80	56.91	
4	58.82	58.73	
5	60.77	60. 43	
6	61.00	60.65	

表2 标准体组件温度计算结果比较

Table 2 Stangard Fuel Component Temperature

Calculation Results

流道编号	燃料芯块最高	5温度/℃
	本文计算结果	现有参考结果
1	92.73	85. 52
2	93.22	87.81
3	94. 98	89.16
4	96.82	90.49
5	97.86	91.14
6	97.92	91.19

3.1.2 组件内温度分布计算结果

从以上分析和计算结果可以看出,由于 CARR 燃料组件中边界流道尺寸不一致,各流道内冷却剂 流量是不一样的,使得燃料元件两侧冷却条件不一 样,这时燃料元件为非对称冷却。图 4 和图 5 分别 显示了标准燃料组件 9 内冷却剂温度和燃料芯体最 高温度沿流动方向分布。

Fig. 5 Coolant Temperature Standard Fuel Components of CARR

136

从图中可见,组件最边缘通道1冷却剂温度最低,但与其它流道温度相差不大,这是由于边缘通 道只有单侧燃料板加热,但同时流道间隙最窄,流 量分配份额最小。由外而内流道冷却剂温度逐渐升 高,这是由于冷却剂通道逐渐变窄,通道冷却剂流 量减小,在燃料功率相同的情况下,温度升高较 多。燃料组件内部的通道5和通道6的温度分布基 本相同。燃料板5和燃料板6的燃料最高温度也分 布基本相同,这说明组件边缘流道由于流量分配不 均而导致为非对称换热,内部间隙相同的流道流量 分配均匀为对称换热。表1和表2为本文计算结果 和参考结果比较,从比较可以看出,冷却剂温度计 算结果与参考结果符合较好,但燃料温度整体偏 高,这可能是获得的燃料芯体物性不够准确造成 的。

3.2 组内单一流道堵塞事故稳态仿真结果

在板状燃料堆芯中,冷却剂通道之间彼此相 隔,通道之间没有流动交混。因此当某个燃料组件 内流道传热恶化时,可能由于热量不能及时导出而 造成恶劣通道热工水力条件更加恶劣,直至燃料烧 毁。板状燃料堆芯中冷却剂通道大都比较狭窄,在 运行中由于燃料辐照起泡,燃料板结垢或异物堵塞 通道等工况,使得冷却剂通道局部堵塞而造成传热 恶化,因此有必要对这一现象进行分析。

事故描述:如图 6 所示,假设在额定工况下, 10s时 CARR 堆芯标准组件 11、12 的中间流道(编 号 12)发生流道堵塞事故,在 1s内流道流通面积被 堵塞 90%。假设在堵流事故中不能停堆。由于点堆 模型不能反映局部热工水力参数变化对局部功率的 影响,因此在瞬态计算时采用保守估计,认为组件 功率在堵流后保持不变,同时各燃料板间功率均匀 分布。

图 7 为堵流事故后,被堵塞流道所在的燃料组件 11 冷却剂流量变化曲线。从图中可以看出,组件内一个小流道堵塞对整个组件流量影响很小,通过组件的冷却剂流量仅由 11.88kg/s 下降至 11.86kg/s。从下图 7 中可以看出被堵的通道 12 流量迅速降低,其它通道的流量均有所增加,与被堵通道相邻的通道 11 和通道 13 流量增加的更多一些。这是由于通道 12 堵塞后两侧燃料板的热量传给另一侧冷却剂通道 11 和 13,使得这两个通道受热功率增加,而且从以上计算结果看出,对于 CARR 功率份额高的通道,其流量份额也高,因此与被堵流道相邻两个流道,流量增加的更多些。

Fig. 9 Temperature Variation Curve of the Channel Outlet, the Fuel Slab 12 Before and After Blockage

图 8 为堵流事故中组件内各通道出口冷却剂温 度计算结果。堵流后通道 12 流量减小, 冷却剂温 度升高。相邻通道11和13尽管流量有所增加。但 是堵流通道两侧燃料板对通道 11 和 13 加热功率也 增加,因此这两个通道冷却剂出口温度增加,其余 通道冷却剂出口温度由于冷却剂流量增加而都有所 降低。图9为被堵通道右侧燃料板12温度场计算 结果。堵流前燃料板 12 两侧为对称传热,其温度 场为对称分布有: $T_{cil} = T_{cir}$, $T_{col} = T_{cor}$, $T_{fl} = T_{fr}$, 且 $T_{ci} > T_{co} > T_{fo}$ 堵流后, 燃料板 12 左侧对流传热 减弱,两侧为不对称传热,温度场为不对称分布, 其中 $T_{cil} > T_{col} > T_{cir} > T_{cor} > T_{fl} > T_{fr\circ}$ 其中: T_{fl} 燃料左侧通道冷却剂温度,T_{col}----燃料板左侧包 壳外表面温度, T_{cil}——燃料板左侧包壳内表面温 度, T.,——燃料板右侧包壳内表面温度, T.,—— 燃料板右侧包壳外表面温度,T_t---燃料右侧通道 冷却剂温度。

4 结论

本文通过 Hermite 插值积分理论列出求解方程, 利用 Fortran 语言将方程转换为算法程序,并将算法 程序移植加入反应堆热工水力实时仿真程序 THE-ATRe 中。通过计算中国先进研究堆(CARR)的标 准燃料组件和跟随体燃料组件的稳态温度分布, 并与参考数值对比验证了此种方法的可行性。应 用该方法模拟板型燃料组件流道堵塞事故,可以 更准确的分析出不对称冷却条件下燃料元件的温 度分布。

参考文献:

- [1] 卢庆,秋穗正,田文喜,等.板状燃料元件堆芯流量分配及 不对称冷却计算研究[J].核动力工程,2008(2):24-29.
- [2] 张志俭,李磊,郭赟.板状燃料反应堆热工水力实时仿真程 序研究与开发[J].核动力工程,2010(6):56-63.
- [3] 卢庆,张志俭,秋穗正,苏光辉,田文喜.板状燃料元件堆 芯热工水力特性分析程序开发及验证[J].核动力工程, 2009(5): 26-29.
- [4] ALHAMA F, CAMPO A. The Connection Between the Distributed and Lumped Models for Asymmetric Cooling of Long Slabs by Heat Convection [J]. Int. Comm. Heat Mass Transfer. 2001, 28(2): 127-137.

(责任编辑 高春萌)

and the set of the set	processes proce		
0-0	◎广东阳江核电站工程	:=	
	<↓ 广西防城港核电站工程 ······ 封	· 三 🖇	
0~0	》中国能源建设集团广东省电力设计研究院有限公司 封	·底 》	
) ⁽ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		