Low-Carbon Collaborative Transformation Technology

DOI: 10.16516/j.gedi.issn2095-8676.2022.03.008

OA: https://www.energychina.press/

抽凝机组耦合热电转换辅助调峰系统参数设计

赵浩腾1,宋民航2,王金星1.3,∞

 (1. 华北电力大学 能源动力与机械工程学院,河北保定071003; 2. 中国科学院 过程工程研究所 多相复杂系统国家重点实验室, 北京100190; 3. 华北电力大学 能源动力与机械工程学院,北京102206)

摘要:[目的]为适应新能源电力并网需求,原有抽凝热电联产机组深度调峰供热改造已为重要途径之一。现有包括 电热泵和电锅炉在内的热电转换装置为辅助火电机组调峰提供了潜在途径。[方法]以350 MW 抽凝机组为例,建立 了以热电转换装置辅助调峰参数优化模型,重点分析了热电转换设备参数对深度调峰性能的影响;其次,分别对比 了电热泵和蓄热电锅炉两种典型热电转换系统在不同装置容量、不同放热速率下的调峰深度;最后,介绍了300 MW 燃煤机组的煤耗率与污染物排放水平,指出本系统的节能效益,并给出热电转换装置的最优参数。[结果]结果 显示:当电热泵的热功率为100 MW、放热速率与热功率相匹配也为100 MW 时,机组的调峰深度达到最大值,为 73 MW 左右;当蓄热式电锅炉的电功率为45 MW、放热速率为100 MW 时,机组的调峰深度达到最大值,为70.05 MW。蓄热式电锅炉的储热量在24h中内略有增加,净储热量的数值为967.5 kWh。[结论]功率和放热速率是衡量热 电转换装置辅助机组调峰能力的重要参数,且二者之间要有一定程度上的匹配性,针对不同情景灵活匹配热电转换 装置的类型与参数可大幅提升机组的调峰深度。

文章编号: 2095-8676(2022)03-0072-08 开放科学(资源服务)二维码:

Parameter Design of Coupled Thermoelectric Conversion Auxiliary Peak Shaving System for Condensing Unit

ZHAO Haoteng¹, SONG Minhang², WANG Jinxing^{1,3,∞}

(1. School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, Hebei, China;

2. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences,

Beijing 100190, China; 3. School of Energy, Power and Mechanical Engineering,

North China Electric Power University, Beijing 102206, China)

Abstract: [Introduction] In order to meet the demand for new energy power grid connection, the deep peak-shaving heat supply transformation of the original extraction and condensing cogeneration unit has become one of the important ways. Existing thermoelectric conversion devices, including thermoelectric pumps and electric boilers, provide a possible way to assist thermal power units in peak shaving. [Method] Taking a 350 MW extraction condensing unit as an example, an optimization model for peak shaving parameters assisted by a thermoelectric conversion device was established, and the influence of thermoelectric conversion equipment parameters on the deep peak shaving performance was analyzed. Secondly, the peak shaving depths of two typical thermoelectric conversion systems of electric heat pump and thermal storage electric boiler under different device capacities and different heat release rates were compared, respectively. Finally, the coal consumption rate and pollutant emission level of the 300 MW coal-fired unit were introduced, the energy-saving benefit of the system was pointed out, and the optimal parameters of the thermoelectric conversion device were given. [Result] The results show that when the thermal power of the electric heat pump is 100 MW and the heat release rate is also 100 MW, the peak shaving depth of the unit reaches the maximum value, which is about 73 MW. When the electric power of the regenerative electric boiler is 45 MW, and the heat release rate is 100 MW, the peak-shaving depth of the unit reaches the maximum value, which is about 73 MW.

收稿日期: 2022-05-12 修回日期: 2022-05-19

基金项目:国家自然科学基金资助项目"变负荷运行下旋流煤粉燃烧稳定性及 NO_x 生成特性研究" (52006120)

storage capacity of the regenerative electric boiler increases slightly within 24 h, and the net heat storage value is 967.5 kWh. [Conclusion] Power and heat release rate are important parameters to measure the peak shaving capacity of auxiliary units of thermoelectric conversion devices, and there must be a certain degree of matching between the two. Flexible matching of the type and parameters of the thermoelectric conversion device for different scenarios can greatly improve the peak shaving depth of the unit.

Key words: combined heat and power generation; thermoelectric conversion device; heat storage capacity; exothermic rate; the depth of the load

2095-8676 © 2022 Energy China GEDI. Publishing services by Energy Observer Magazine Co., Ltd. on behalf of Energy China GEDI. This is an open access article under the CC BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/).

0 引言

随着"碳达峰、碳中和"战略目标的提出以及风 力、太阳能等新型能源电站装机容量的不断增长,我 国原有的火电机组逐渐向调峰机组转型,相关研究 主要集中在运行策略、深度调峰、灵活性改造、热电 解耦等方面。例如,张倩^[1]利用 Ebsilon 软件对热电 联产机组和高压背乏汽供热与抽汽耦合梯级利用供 热系统进行了建模计算,结合案例分析了高压背供 热系统在供热季的运行策略,得到不同环境温度下 的最佳运行背压,制定调峰需求下高背压热电联产 供热系统的运行策略。张慧帅^[2]研究了热电联产机 组在供暖期的负荷响应特性与机组运行特性,通过 Ebsilon 软件建模计算了机组的变负荷过程,提出了 调峰响应机制的优化策略并对优化方案进行了效果 评估。Francis 等³ 深入研究热电联产机组的余热回 收,对机组的7种不同余热回收改造作出经济性评 价,发现节能效果与经济效益最优的是含烟气的余 热回收改造方案。Tang 等^[4]提出一种热电联产系统 结合风电的热电解耦系统,可以弥补电力供应问题, 优化系统运行,实现热电负荷的灵活调节。综上所 述,目前热电联产机组进行改造的主要需求在于进 一步提高热电比以及实现机组的热电解耦。

在提高燃煤机组调峰能力的措施中,电锅炉与 电热泵作为具有电热双效调节特点的热电转换装置 已广受人们认可。学者们着重研究了电锅炉与电热 泵辅助火电机组消纳新能源电力的能力,以及针对 不同的工程应用仿真设计不同的电锅炉与电热泵系 统。例如,李盛伟等^[5]利用 MATLAB/Simulink 软件 对相变储能电锅炉进行仿真,提出了一种基于串联 PID 的温度控制方法用以解决系统灵活性差的缺点, 结果发现该方法可以实现稳定控制电锅炉的出水温 度,并且具有一定抗干扰能力。杨锡运等^[6] 以运行 成本最小和弃风消纳最大为目标函数,建立了基于 风电-蓄热式电锅炉联合供暖的风电消纳多目标双 层优化模型,发现该调度方法提高了系统的风电消 纳水平及运行经济性。何哲等^[7]提出了一种基于电 热泵自调节的配电网电压优化控制策略,结合实例 发现该策略可以提高农村配电网运行电压质量,改 善电热泵启动情况和用户采暖效果。Zhang 等^[8]利 用电锅炉改造热电联产机组的抽水蓄能系统,提高 了机组消纳风电的数量与比例,结合区域实际数据, 采用时序仿真法对热电联产机组的经济性进行了评 估。最终发现,耦合电锅炉的热电联产系统不仅可 以有效提高消纳风电的数量,还具有节能减排的经 济效益。Chen 等¹⁹提出一种耦合 CO, 热泵的热电 联产系统,该系统以机组排汽作为低温热源,利用机 组的电功率对外供热,在总供热量相同情况下,机组 的最小发电量降低约 38 MW,有效地破除了热电耦 合,增强了机组深度调峰的能力。然而,现有关于热 电装置的研究更多地在于仿真设计以及消纳新能源 电力层面,通过优化运行策略实现对热电转化装置 的参数设计还比较匮乏。

为此,本文将以 350 MW 燃煤机组为研究对象, 提出一种通过优化运行策略设计热电转换装置的方 法,研究了机组分别耦合电热泵系统和蓄热式电锅 炉时,热电转换装置在不同装置容量和放热速率下 辅助系统调峰的性能,并对热电转换装置进行了参 数优化设计及相应的验证,为相关的工程改造提供 参考。

1 系统简介

本工作以 350 MW 燃煤抽凝机组为核心设备, 分别与电热泵和电锅炉两种热电转换装置耦合供热, 具体的系统流程见图 1。本系统在原有燃煤机组的 基础上进行了中压缸抽汽供热改造,同时分别耦合

了两种热电转换装置(a为蓄热式电锅炉供热系统, b为电热泵供热系统)^[10]。其中,蓄热式电锅炉供热 系统流程为:汽轮机的中压缸抽汽被送到储热罐里 进行换热,乏汽变成疏水被送回除氧器。此外,发电 机产生的电力驱动电锅炉制热,加热从储热罐进入 电锅炉的工质,使供热热水达到热用户需求并进入 一级换热站进行分配。电热泵供热系统流程为:发 电机产生的电力驱动电热泵回收电厂循环水余热, 加热供热热水,循环水冷却后回到凝汽器中再次循 环。供热热水经电热泵升温后被送入热网加热器, 热网加热器利用中压缸抽汽进一步加热供热热水, 乏汽以疏水形式回到除氧器,供热热水达到热用户 需求,进入一级换热站进行分配。上述两种方案都 能起到辅助系统调峰的作用,本文通过实例计算并 分析两种方式在辅助调峰方面的优缺点,找到各自 方案的最优参数组。

g. 1 A cogeneration unit coupled with a thermoelec conversion device

本文采用的热电转换装置包括蓄热式电锅炉系 统和电热泵系统,其具体参考数值见表1。现有电热 泵的 COP 一般为3,而热功率选取表1参考值 50/180 MW 的中间值120 MW;工程应用中蓄热式电 锅炉的电功率一般不会超过40 MW,对表1的储热 量参考值进行取整并平均,得到本文的蓄热式电锅 炉参数值。综上所述,本文选取电热泵系统的主要参 数为:电功率为40 MW,COP为3,热功率为120 MW, 热利用率是95%;选取蓄热式电锅炉系统的主要参 数为:电功率为40 MW,电热转换效率为95%,储热 量为250 MWh。

表 1 热电转换装置的类型及参数

Tab. 1 Types and parameters of thermoelectric conversion devices

类型	电/热功率/MW	储热量/MWh	COP	参考文献
蓄热式电锅炉	40×4	952	_	[11]
电热泵	50/180	_	3	[12]

本文主要研究在热电联产机组分别耦合电热泵 系统和蓄热式电锅炉系统时,机组在电热泵系统或 蓄热式电锅炉系统的"热电解耦"作用下所能达到 的极限调峰能力。本文所采用的供暖季热电负荷数 据均为某电厂机组实际供暖季的参数,如图2所示, 然后通过 MATLAB 编程寻找电热泵系统和蓄热式 电锅炉系统的最优参数以及其参数与调峰深度的关 系,找到最大调峰深度。

2 逻辑运行策略

图 3 表示热电联产机组分别耦合电热泵系统与 蓄热式电锅炉系统的逻辑运行图^[13]。其中,*X* 表示供 暖季热负荷曲线,*Y* 表示供暖季电负荷曲线,*M* 与 *W* 分别表示热电转换装置的功率与储热量。

本文的计算过程简述如下:根据供暖季热负荷 曲线,采用机组优先供热模式,判断燃煤机组的电负 荷的上限和下限。当满足调节下限时,将各个时刻 点的供暖季电负荷数据 Y 整体下降一个数值进行调 峰操作,直到燃煤机组不可调。当燃煤机组不可调 后,开启热电转换模式,通过热电转化装置承担部分 热负荷需求,同时消耗机组部分电功率,实现一定程 度上的"热电解耦"后,燃煤机组侧又重新满足可调。

图 5 两种东东的逻辑运门图 Fig. 3 Logic diagram of the two systems

可调节的电负荷即为热电解耦后机组的实际输出负 荷可以降低的数值。此时,寻找热电转换装置参数 与深度调峰的对应性关系,借以找到深度调峰的极 限值,即调峰深度。所谓"调峰深度"是指,将供暖 季电负荷 Y 整体下降一个数值使机组进入不可调后, 开启热电转换装置使机组恢复可调后机组电负荷所 能够继续下降的最大程度。需要指出的是,供暖季 区域热负荷 X 和电负荷 Y 均来自区域的实际热电需 求。热电转化装置起初参数设定 M 和 W 均为零,根 据实际的调节需求,逐次增加 M 和 W 的数值。最后 设定边界值为: Y 的最小数值为 350 MW 燃煤机组 的 30% 功率,即最小电负荷降到 105 MW 时,满足达 边界条件,计算终止。

判断"可调"的依据是热电转换装置在不同的 设定参数值即后续研究的参数值下承担机组的热负 荷,同时消耗部分机组的电负荷,实现机组的"热电 解耦",使机组承担该时刻的电负荷时可正常运行。 若机组的热电负荷满足条件,则为可调;反之则为不 可调^[14]。判断"达边界"的依据是实现假定热电转换 装置的参数,在机组恢复可调之后,判定此时需要的 热电转换装置的参数是否达到了规定的边界值。若 达到,则结束程序;反之继续下降电负荷,寻找其最 大的下降深度。

本文计算逻辑的合理性体现在燃煤机组耦合不同参数的热电转换装置时,优先保证机组的可调节能力,以此为第一原则寻找机组所能够实现最大的 调峰深度。值得注意的是,本文分别研究了电热泵 系统与蓄热式电锅炉系统辅助调峰的能力,并将二 者进行对比,寻找二者各自的优势之处,为工程实践 提供借鉴意义。

3 结果与讨论

3.1 电热泵参数对调峰深度的影响

本文分析了电热泵系统的参数对调峰深度的影响,主要研究电热泵系统的热功率和放热速率这两 个重要参数。此外,由于电热泵系统的热电比很大, 因此可以显著降低机组的电负荷下边界,故本文设 定从 0 min 到 1 440 min,电热泵系统是一直开启的。

如图 4 所示,当放热速率不变时,随着电热泵系 统热功率的增加,机组的调峰深度先近似线性上升, 达到最大调峰深度后保持不变。从数据上看,在不 开启电热泵系统的情况下,机组的最大调峰深度只 有 40 MW 左右;而当机组进入电热泵制热模式且电 热泵系统的热功率为 100 MW 左右时,其调峰深度 达到最大值,为 73 MW 左右,相比于不开启电热泵 系统,调峰深度升高接近一倍。

当电热泵系统的热功率不变,随着放热速率的 增加,机组的调峰深度近似线性增长,最后稳定不变。 可以看出,放热速率对调峰深度的影响与电热泵系 统热功率对调峰深度的影响是相同的。这是因为, 热泵系统的热功率相当于制热速率,因为电热泵不 能够储存热量,制得的热量必须放热给循环工质,放 热速率不可能大于制热速率,因而当热功率对调峰 深度的影响稳定时,放热速率对调峰深度的影响也 稳定。而研究二者对调峰深度的影响时,假定其中 一个参数为最优值,则相当于串联系统的两个相同 的子系统,其对调峰深度的影响是相同的,因此二者 的结果是相同的。必须指出的是,在应用电热泵系 统时,必须保证电热泵系统的热功率与放热速率是 相匹配的。若二者不匹配,则可能造成热量损失,严 重时电热泵因温度超过规定值损坏。在上述条件下, 机组才能找到最优的电热泵系统参数。

由上述可知,当电热泵热功率和放热速率均为 120 MW时,机组已经达到最大调峰深度,此时机组发 电功率与电热泵电功率如图 5 中蓝线与红线所示。可 以看出,电热泵的电功率基本稳定在 20 MW 至 27 MW 之间,机组的发电功率整体上下降较大。

3.2 蓄热电锅炉参数对调峰深度的影响

本文分析了蓄热式电锅炉系统的电功率和放热 速率对调峰深度的影响,设定蓄热式电锅炉系统具 有3种模式:当电负荷可调且全负荷开启蓄热式电 锅炉系统不会使机组进入不可调时,蓄热式电锅炉 处于额定工况运行状态,制取并储存热量;当电负荷 可调且全负荷开启蓄热式电锅炉系统会使机组进入 不可调时,蓄热式电锅炉处于变工况运行状态,制取 热量并存储;当电负荷不可调时,蓄热式电锅炉系统 释放出热量使机组恢复可调。必须指出的是,蓄热 式电锅炉系统的净储热量在24h内必须保证不变或 略有增加。

如图 6 所示,当电锅炉放热速率数值保持较小 值时,机组的调峰深度不随电锅炉耗电功率变化,是 一个定值;当电锅炉放热速率数值保持较大值时,机 组的调峰深度随着电锅炉耗电功率的增加而增大, 最后保持不变。这是因为,当放热速率较小时,电锅 炉系统参与调峰的能力十分有限,调峰需要的热量 很少,只需要很小的电锅炉耗电功率就能满足调峰 的需要,此时的电锅炉耗电功率大大超过实际需求 的耗电功率,因此机组的调峰深度不随电锅炉耗电 功率变化;而当放热速率较大时,制约机组调峰的因 素不再是电锅炉的放热速率,而是保障电锅炉系统 的净储热量大于 0,因此电锅炉系统必须及时补充辅 助机组调峰所消耗的热量,机组调峰对电锅炉系统 的耗电功率有较高要求,机组的调峰深度随着电锅 炉耗电功率的增加而增加,最后保持不变。从数据 上看,在不开启蓄热式电锅炉系统的情况下,机组的 最大调峰深度只有 40 MW; 而当蓄热式电锅炉的耗 电电功率为 45 MW, 放热速率为 100 MW 时, 机组的 调峰深度达到最大值,为70.05 MW 左右。

当耗电功率不变,随着放热速率的增大,机组的 调峰深度整体上先线性上升,再趋于平缓,最后保持 不变。在本文选择的参数即耗电功率为40 MW下, 随着放热速率的增加,机组的调峰深度从40 MW 线性增长到67.95 MW,然后逐渐趋于平缓,最后稳 定于70.03 MW,具体的变化趋势如6中黑色线所示。 从运行过程来看,放热速率影响的是机组由不可调 变为可调时蓄热式电锅炉系统所能放出的热量,由 此限制了机组的深度调峰。随着放热速率的提高, 蓄热式电锅炉系统每分钟所能放出的能量变多,参 与辅助调峰的能量变多,机组的调峰深度逐渐变大, 当放热速率变得理想时,调峰深度达到最优值并保 持不变。

综上所述,蓄热式电锅炉系统的耗电功率和放

热速率都能显著提高机组的调峰深度,并且二者要 有一定的匹配性,这样才能使机组达到最优的调峰 深度。值得指出的是,蓄热式电锅炉的储热容量也 会对机组的调峰产生影响,储热容量要求蓄热式电 锅炉储存足够的热量来参与机组的调峰,若储热容 量太小,参与调峰的热量不能满足需求,则会制约机 组的调峰能力,本文选取的储热容量值很大,因此不 考虑储热容量对机组调峰深度的影响。

图 6 电锅炉参数对调峰深度的影响 Fig. 6 Influence of electric boiler parameters on peak depth

如图 7(a) 所示, 在蓄热式电锅炉的耗电功率为 40 MW, 放热速率为 100 MW 时, 蓄热式电锅炉进入 工作状态后机组各参数有较为明显的变化。机组向 外输出的电负荷整体上减小, 总体上数值变化较为 平缓, 绝大部分时刻的电负荷位于 200 MW 至 240 MW 之间, 而电锅炉制热耗电所占机组总发电量的比重 很小, 通过辅助调峰所富余的电量可以用于其他用 途。如图 7(b) 所示, 蓄热式电锅炉充热或放热的时 刻点占总时刻点的 99% 以上, 充热或放热时刻点相 对集中, 充热时刻点主要集中在机组发电功率较高 的区间, 放热的时刻点主要集中在机组发电功率较高

3.3 热电转换参数的准确度验证

由图 8 可知, 在机组运行的前 60 min 中, 蓄热式 电锅炉不充热、只放热, 这就要求蓄热式电锅炉要有 一定的储热量。因此, 蓄热式电锅炉的储热装置必 须保证在 24 h 内的储热量不变或略有增加。本文经 过建模计算后, 蓄热式电锅炉在 24 h 中内储热量的 净增加值为 967.5 kWh。值得指出的是, 有关蓄热式

图 7 启动电锅炉后各参数变化情况

Fig. 7 Changes of parameters after starting electric boiler

电锅炉的建模计算均需要满足上述条件,在此条件 下计算所得机组的各种参数值。经过验证,实际需 求的电锅炉电功率比 40 MW 略低,而考虑散热及裕 量等因素后装置实际需求的储热量约为 150 MWh, 大幅减小蓄热式电锅炉的储热量。

3.4 热电负荷区域

通过上述计算可以得到整个系统原来的热电调

节范围,以及添加电热泵或电锅炉后系统的热电调 节范围,具体形状如图9所示。

Fig. 9 The thermoelectric adjustment range of the unit

由图 9 可知,不论是加装电热泵还是加装电锅 炉,系统的热电负荷调节范围都显著增高。对于加 装电热泵情况而言,由于电热泵具有较大的热电比, 因此整个系统所能调节的热负荷范围显著增大,同 时系统在热负荷调节范围内能够保持较低的电负荷 下限。对于加装电锅炉情况而言,电锅炉能使机组 的最小电负荷达到本文设定的极限值,降低机组下 限的能力比电热泵强,虽然系统能够调节的热负荷 范围略逊于电热泵,但能使系统在较大热负荷范围 内同时具有较高的电负荷上限值。

3.5 污染物减排分析

现阶段供电煤耗与污染物排放量可参考表 2^[15]。 根据《三北地区光煤互补发电机组变工况性能研究》 可知:节约1t标准煤能够降低 NO_x 的量为 0.006 t, 降低 SO₂ 的量为 0.004 1 t,降低粉尘的量为 0.000 2 t^[16]。

表 2 不同类型燃煤机组的煤耗率与污染物排放量

Tab. 2 Coal consumption rate and pollutant emission of different types of coal-fired units

31							
机组类型	负荷率/%	负荷范围/ MW	煤耗率/ [g·(kWh) ⁻¹]				
300 MW	50 ~ 100	15 ~ 300	301.9 ~ 324.8				
机组类型	烟尘排放 质量浓度/(mg·m ⁻³)	NO _x 排放 质量浓度/(mg·m ⁻³)	SO ₂ 排放 质量浓度/(mg·m ⁻³)				
300 MW	0 ~ 6	5 ~ 47	9~23				

根据图 5 及相关数据、公式可以算出,机组耦合电热 泵系统在 24 h 中内能够节约的燃煤量为 617.23 t,能 够降低 NO_x 的量为 3.7 t,降低 SO₂ 的量为 2.53 t,降 低粉尘的量为 0.123 t。根据图 7 及相关数据、公式 可以算出,机组耦合电热泵系统在 24 h中内能够节 约的燃煤量为 193.87 t,能够降低 NO_x 的量为 1.16 t, 降低 SO₂ 的量为 0.795 t,降低粉尘的量为 0.039 t。

4 结论

本文以某 350 MW 抽凝机组为案例,考虑了机 组分别耦合电锅炉系统与耦合电热泵系统两种辅助 调峰系统,重点分析了两种系统的参数对机组调峰 深度的影响,并结合实例计算分析了增加辅助系统 后机组各参数值的变化,并给出了机组的节能减排 效益。具体结论如下:

1)抽凝机组耦合电热泵系统时,随着电热泵热 功率或放热速率的提高,机组的调峰深度逐渐增大, 最后保持不变。当电热泵的热功率为100 MW、放 热速率与热功率相匹配也为100 MW时,机组的调 峰深度达到最大值,为73 MW 左右。

2)抽凝机组耦合蓄热式电锅炉系统时,当放热 速率较小时,机组的调峰深度不随电锅炉耗电功率 变化;当放热速率较大时,机组的调峰深度随着电锅 炉耗电功率的增加而增大,最后保持不变;当耗电功 率不变时,机组的调峰深度随着电锅炉放热速率的 增加而增大,最后保持不变。当蓄热式电锅炉的电 功率为45 MW、放热速率为100 MW时,机组的调 峰深度达到最大值,为70.05 MW,蓄热式电锅炉的 储热量在24 h 中内略有增加,净储热量为967.5 kWh。

3) 机组耦合电热泵系统在 24 h 中内能够节约的 燃煤量为 617.23 t, 能够降低 NO_x 的量为 3.7 t, 降低 SO₂ 的量为 2.53 t, 降低粉尘的量为 0.123 t; 机组耦合 电热泵系统在 24 h 中内能够节约的燃煤量为 193.87 t, 能够降低 NO_x 的量为 1.16 t, 降低 SO₂ 的量为 0.795 t, 降低粉尘的量为 0.039 t。

参考文献:

 张倩.高背压热电联产机组调峰性能与负荷分配研究 [D].北 京:华北电力大学(北京), 2021. DOI: 10.27140/d.cnki.ghbbu. 2021.001078.

ZAHNG Q. Research on peak regulation performance and load distribution of high back-pressure combined heat and power units [D]. Beijing: North China Electric Power University(Beijing), 2021. DOI: 10.27140/d.cnki.ghbbu.2021.001078.

- [2] 张慧帅.600 MW热电联产机组利用热网蓄能特性的灵活性研 究 [D]. 北京: 华北电力大学(北京), 2019. DOI: 10.27140/d. cnki. ghbbu. 2019.000876. ZHANG H S. Research on flexibility of 600 MW cogeneration units using thermal network energy storage characteristics [D]. Beijing: North China Electric Power University(Beijing), 2019. DOI: 10.27140/d.cnki.ghbbu.2019.000876.
- [3] EBOH F C, ANDERSSON B, RICHARDS T. Economic evaluation of improvements in a waste-to-energy combined heat and power plant [J]. Waste Management, 2019, 100: 75-83. DOI: 10.1016/j.wasman.2019.09.008.
- [4] TANG J, DING M, LU S, et al. Operational flexibility constrained intraday rolling dispatch strategy for CHP microgrid [J]. IEEE Access, 2019, 7: 96639-96649. DOI: 10. 1109/ACCESS.2019.2929623.
- [5] 李盛伟,张来,梁海深.基于串级PID的相变储能电锅炉温度 控制技术 [J]. 热能动力工程, 2020, 35(8): 85-89. DOI: 10. 16146/j.cnki.rndlgc.2020.08.012.

LI S W, ZHANG L, LIANG H S. Temperature control technology of phase change energy storage electric boiler based on cascade PID [J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(8): 85-89. DOI: 10.16146/j.cnki.rndlgc. 2020.08.012.

[6] 杨锡运,张洋,谢志佳,等.基于风电-蓄热式电锅炉联合供暖的 风电消纳多目标双层优化调度 [J]. 太阳能学报, 2020, 41(1): 273-281

YANG X Y, ZHANG Y, XIE Z J, et al. Multi-objective bi-level optimization operation of wind power accommodation for heat storage electric boiler combined with wind power [J]. Acta Energiae Solaris Sinica, 2020, 41(1): 273-281.

- [7] 何哲,李洪涛,侯恺,等.基于电热泵自调节的农村配网电压优 化控制策略 [J]. 电力系统及其自动化学报, 2019, 31(7): 15-22+35. DOI: 10.19635/j.cnki.csu-epsa.000232. HE Z, LI H T, HOU K, et al. Voltage optimal control strategy for rural distribution network based on self-regulation of electric heat pumps [J]. Proceedings of the CSU-EPSA, 2019, 31(7): 15-22+35. DOI: 10.19635/j.cnki.csu-epsa.000232.
- [8] ZHANG N, LU X, MCELROY M B, et al. Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage [J]. Applied Energy, 2016, 184: 987-994. DOI: 10.1016/j.apenergy.2015.10.147.
- [9] CHEN H, YAO X, LI J, et al. Thermodynamic analysis of a novel combined heat and power system incorporating a CO₂ heat pump cycle for enhancing flexibility [J]. Applied Thermal Engineering, 2019, 161: 114160. DOI: 10.1016/j.applthermaleng.2019.114160.
- [10] 王金星,郝剑,刘畅,等.抽凝机组热电联产系统中扩大热电负 荷比的灵活性研究 [J]. 热力发电, 2020, 49(12): 41-50. DOI: 10.19666/j.rlfd.202002095. WANG J X, HAO J, LIU C, et al. Enlargement of heatelectricity ratio for flexibility operation in a large-scale extraction condensing turbine system [J]. Thermal Power

Generation, 2020, 49(12): 41-50. DOI: 10.19666/j.rlfd. 202002095.

刘圣冠, 乔磊, 翟鹏程, 等. 蓄热电锅炉供热技术及工程应用 [11] [J]. 热力发电, 2020, 49(8): 91-96. DOI: 10.19666/j.rlfd. 202004071. LIU S G, QIAO L, ZHAI P C, et al. Technology and engineering application of heating with thermal storage electric boiler [J]. Thermal Power Generation, 2020, 49(8): 91-96. DOI: 10.19666/j.rlfd.202004071.

- 田潇潇. 多区域互联电热联合系统协调调度 [D]. 武汉: 华中 [12] 科技大学, 2019. DOI: 10.27157/d.cnki.ghzku.2019.002198. TIAN X X. Coordinated dispatch of multi-area interconnected electric-thermal combined system [D]. Wuhan: Huazhong University of Science and Technology, 2019. DOI: 10.27157/d.cnki.ghzku. 2019.002198.
- 田景奇, 方旭, 王天堃, 等. 风-光-蓄电-燃煤互补系统的参数匹 [13] 配优化 [J]. 热力发电, 2022, 51(5): 27-33. DOI: 10.19666/j. rlfd.202112251. TIAN J Q, FANG X, WANG T K, et al. Optimization on parameter matching for complementary system combing windphotovoltaic-electric storage with coal-fired unit [J]. Thermal Power Generation, 2022, 51(5): 27-33. DOI: 10.19666/j.rlfd. 202112251
- [14] 张翼,魏书洲,任学武,等.风电-抽凝机组耦合系统供暖方案 研究 [J]. 热力发电, 2021, 50(11): 54-60+67. DOI: 10.19666/j. rlfd.202106111.

ZHANG Y, WEI S Z, REN X W, et al. Heat supply schemes for a coupling system of condensing unit and wind power [J]. Thermal Power Generation, 2021, 50(11): 54-60+67. DOI: 10. 19666/j.rlfd.202106111.

马大卫, 王正风, 何军, 等. 安徽煤电深度调峰下机组煤耗和污 [15] 染物排放特征研究 [J]. 华电技术, 2019, 41(12): 1-7+15. DOI: 10.3969/j.issn.1674-1951.2019.12.001.

MA D W, WANG Z F, HE J, et al. Study on the coal consumption and pollutant discharge characteristics of coal-fired units participating in deep peak-regulating operation in Anhui Province [J]. Huadian Technology, 2019, 41(12): 1-7+15. DOI: 10.3969/j.issn.1674-1951.2019.12.001.

[16] 刘伟, 束继伟, 金宏达, 等. 三北地区光煤互补发电机组变工况 性能研究 [J]. 黑龙江电力, 2021, 43(6): 542-547+551. DOI: 10.13625/j.cnki.hljep.2021.06.016. LIU W, SHU J W, JIN H D, et al. Study on off-design performance of solar hybrid coal-fired power generation in northern China [J]. Heilongjiang Electric Power, 2021, 43(6): 542-547+551. DOI: 10.13625/j.cnki.hljep.2021.06.016.

作者简介:

赵浩腾(第一作者)

2000-, 男, 山东烟台人, 华北电力大学(保定) 本科在读,研究方向为火电机组灵活调峰及 系统建模参数优化设计(e-mail) zhaohao teng@163.com.

赵浩腾

王金星(通信作者)

1985-, 男, 河北唐山人, 博士, 博士后, 讲师, 主 要从事燃煤热电联产系统灵活运行及储能参 数优化设计研究工作(e-mail)wangruoguang 860928@126.com。

(编辑 叶筠英)