引用格式:赵航,贾静,杨哲,等.平台式无人机强耦合无线电能传输方法 [J]. 南方能源建设, 2025, 12(2): 158-168. ZHAO Hang, JIA Jing, YANG Zhe, et al. Strongly coupled platform wireless power transmission method for UAV [J]. Southern energy construction, 2025, 12(2): 158-168. DOI: 10.16516/ j.ceec.2024-281.

平台式无人机强耦合无线电能传输方法

赵航¹,贾静¹,杨哲²,张力月³,杨磊^{4,∞},陈团⁴
(1.国网陕西省电力有限公司咸阳供电公司,陕西咸阳 712000;
2.国网陕西省电力有限公司,陕西西安 710048;
3.国网陕西省电力有限公司铜川供电公司,陕西铜川 727031;
4.西安理工大学 电气工程学院,陕西西安 710054)

摘要:[目的]目前,无线电能量传输技术在无人机(Unmanned Aerial Vehicle, UAV)上的应用正成为研究的热点,但 无人机的续航能力仍是发展主要面临的瓶颈之一。[方法]文章面向中小型无人机提出了一种具有强耦合能力并且能 够实现恒压输出的无线电能传输系统。与目前主流的旋翼式无人机无线充电系统相比,该设计方案利用欠阻尼谐振 原理,通过单个晶体管实现高频逆变,以更加小型化,轻量化替代了全桥与半桥逆变器。并且避免了桥臂直通问题, 提高了电路的稳定性。同时,基于磁耦合谐振式无线电能传输系统,采用 LCC-S/CLC 补偿拓扑能够实现恒流/恒压输 出,并且对磁耦合器进行设计,不但增强了耦合线圈接收侧与发射侧的耦合能力,而且减少了接收侧线圈匝数,满 足无人机轻量化的需求。[结果]最后,在 25 V 输入下搭建了一个额定功率为 100 W 的模拟无人机充电实验平台,效 率峰值可达到 92%。[结论] 仿真和实验结果验证了理论分析和计算,证明了基于单管逆变器的无线电能量传输系统 的可行性。

 关键词:无人机;无线电能传输;磁耦合谐振;单管逆变;LCC-S/CLC补偿

 DOI:
 10.16516/j.ceec.2024-281

 文章编号:
 2095-8676(2025)02-0158-11

 CSTR:
 32391.14.j.ceec.2024-281

 中图分类号:
 TM724; V279

Strongly Coupled Platform Wireless Power Transmission Method for UAV

ZHAO Hang¹, JIA Jing¹, YANG Zhe², ZHANG Liyue³, YANG Lei^{4, \veeta}, CHEN Tuan⁴

(1. Xianyang Power Supply Company of State Grid Shaanxi Electric Power Co., Ltd., Xianyang 712000, Shaanxi, China; 2. State Grid Shaanxi Electric Power Co., Ltd., Xi'an 710048, Shaanxi, China; 3. Tongchuan Power Supply Company of State Grid Shaanxi Electric Power Co., Ltd., Tongchuan 727031, Shaanxi, China; 4. School of Electrical Engineering, Xi'an University of Technology, Xi'an 710054, Shaanxi, China)

Abstract: [Objective] At present, the application of wireless power transmission technology on Unmanned Aerial Vehicle (UAV) is becoming a research hotspot, but the endurance of UAV remains one of the main bottlenecks in development. [Method] This paper proposed a wireless power transmission system with strong coupling capability and capable of realizing constant voltage output for small and medium-sized UAV. Compared with the current mainstream multi-rotor UAV wireless charging system, this design scheme utilized the underdamped resonance principle to realize high-frequency inversion through a single transistor, which replaced the full-bridge and half-bridge inverter with a more miniaturized and lightweight one. And it avoided the bridge arm direct conduction problem and improved the stability of the circuit. Meanwhile, the LCC-S/CLC compensation topology realized the constant current/constant voltage output based on the magnetic coupling resonant wireless power transmission system. The design of the magnetic coupler not only enhanced the coupling capability between the receiving side and the transmitting side of the coupling coil, but also reduced the number of

基金项目: 国家电网有限公司科技项目 "电力巡检无人机高自由度平台化无线供电系统" (5226XY240001)

收稿日期: 2024-08-22 修回日期: 2024-09-28

turns of the coil on the receiving side, meeting the lightweight requirements of UAVs. [**Result**] Finally, a simulated UAV charging experimental platform with a rated power of 100 W is built with 25 V input, and the peak efficiency can reach 92%. [**Conclusion**] The simulation and experimental results verify the theoretical analysis and calculation and prove the feasibility of the wireless power transmission system based on a single-transistor inverter.

Key words: UAV; wireless power transmission; magnetic coupling resonant; single-transistor inverter; LCC-S/CLC compensation **2095-8676** © 2025 Energy China GEDI. Publishing services by Energy Observer Magazine Co., Ltd. on behalf of Energy China GEDI. This is an open access article under the CC BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/).

0 引言

随着无人机技术不断发展,无人机作为一种无 人驾驶飞行器,具有高度自主性、多功能性、灵活操 作性、可重复利用性^[1-3]。无人机已广泛应用在农业 植保、电力巡检、航拍测绘、物流、救灾、军事安全 等领域^[4],具有很好的环境适应能力和灵活性,能够 很大程度降低人工成本,甚至在某些特殊领域可以 降低人员伤亡率。无线充电方式同传统有线充电方 式相比具有电气隔离安全性、非接触式充电便捷性 和对恶劣环境良好的适应性等诸多无法取代的优越 性,使无人机能够获得更高效、更安全的飞行体验^[5-7]。 然而无人机的续航能力限制了此技术的进一步发展, 无人机大多数是将电池作为动力载体,它的发展被 电池的蓄电能力与体积重量限制^[8-10],所以发展新型 无人机供能方式正成为当前研究热点。

此外为延长电池的使用寿命,一般采用先恒流 再恒压的两阶段充电方式。文献[11]设计了以LCC-S/CLC补偿式谐振拓扑的WPT系统,通过两开关频 率点的切换即可实现恒流恒压充电模式的转变。但 此方法将会降低系统传输效率并增加设计难度。文 献[12-15]通过原副边闭环控制实现恒流/恒压输出 切换,如控制逆变器移相角或在逆变器前加入Boost 电路等。

基于上述挑战,文章提出了一种以单个开关管 实现高频逆变器且具有恒压/恒流切换能力的磁耦合 无线电能传输系统。仅利用副边结构的切换避免了 使用通信对原边与副边进行闭环控制的电路复杂度, 优点在于实现了无人机无线充电体积更小,功率密 度更高。

1 系统结构及原理

图 1 为所提 WPT 系统的原理图,主要包括单管 LC 逆变电路、原边补偿网络、耦合机构、副边补偿 网络以及滤波整流电路5个部分组成。

1.1 单管 LC 逆变电路特性分析

图 2 为单管高频逆变等效电路图。为进一步分 析单管 LC 逆变电路的输出特性,图 2(a) 逆变电感 *L*_x 与等效负载 *Z*_{eq} 并联等效为图 2(b) 中的等效电 *L*_{eq} 与等效电阻 *R*_{eq}。

在开关管Q导通时,电源电压,等效电感L_{eq},等效电阻R_{eq}以及开关管Q构成电流回路。此时状态 方程为:

$$\begin{cases} u_{\rm c} = V_{\rm in} \\ i_{\rm L} = \frac{V_{\rm in}}{R_{\rm eq}} \left(1 - e^{-\frac{R_{\rm eq}}{L_{\rm eq}}t} \right) \end{cases}$$
(1)

当开关管 Q 关断时, 逆变电容 C_x 与等效电感 L_{eq}, 等效负载 R_{eq} 发生二阶电路零输入响应, 此时状 态方程为:

图 1 基于单管逆变的无人机无线电能传输系统拓扑结构 Fig. 1 Topology of UAV wireless power transmission system

based on single-transistor inverter

$$\begin{cases} u_{c} = \frac{V_{in} \cdot \omega_{0}}{\omega} e^{-\delta t} \sin(\omega t + \beta) \\ i_{L} = \frac{V_{in}}{\omega L_{eq}} e^{-\delta t} \sin(\omega t) \end{cases}$$
(2)

在下一个开关管导通前,等效电感 *L*_{eq},反向流过 开关管 Q 的体二极管续流,状态方程为:

• •

$$\begin{cases} I_{\text{leq}} R_{\text{eq}} + L_{\text{eq}} \frac{di_{\text{leq}}}{dt} = V_{\text{in}} \\ u_{\text{c}} = V_{\text{in}} \end{cases}$$
(3)

为保证出现软开关特性,实现临界 ZVS,意味着 在体二极管续流阶段,等效电感 *L*_{eq} 恰好完成一次电 感的完全放电^[16]。逆变电容 *C*_x 和逆变电感 *L*_x 的关 系如下:

$$\begin{cases} \frac{T_{\rm s}}{2} \sqrt{\frac{1}{L_{\rm eq}C_{\rm x}} - \left(\frac{R_{\rm eq}}{L_{\rm eq}}\right)^2} + \cos^{-1}\left(\frac{R_{\rm eq} \sqrt{L_{\rm eq}C_{\rm x}}}{2L_{\rm eq}}\right) = \pi \\ R_{\rm eq} = \frac{L_{\rm x}Z_{\rm eq}^2}{Z_{\rm eq}^2 - L_{\rm x}^2}, \ L_{\rm eq} = -\frac{Z_{\rm x}L_{\rm eq}^2}{Z_{\rm eq}^2 - L_{\rm x}^2} \end{cases}$$
(4)

1.2 补偿拓扑特性分析

1.2.1 恒压模式

主电路等效电路如图 3 所示, U_{in} 和 U_o分别是 图 1 中 U_{ab} 和 U_{cd} 的基波有效值 L_s 和 L_p分别是耦合 机构的原、副边自感, M 是耦合机构的互感, R_L 是整 流滤波电路和负载的等效电阻。

对图 3 中电路列写 KVL 方程, 可得:

$$\begin{cases} U_{in} = I_1 \left(j\omega L_R + \frac{1}{j\omega C_R} \right) - I_P \frac{1}{j\omega C_R} \\ 0 = \left(j\omega L_P + \frac{1}{j\omega C_P} + X_C + R_P \right) I_P - j\omega M I_S - I_1 \frac{1}{j\omega C_R} \\ 0 = \left(j\omega L_S + \frac{1}{j\omega C_S} + R_L + R_S \right) I_P - j\omega M I_P \end{cases}$$
(5)

图 3 中各补偿参数调谐方法如下:

 $\begin{cases} \frac{1}{j\omega C_{\rm R}} + j\omega L_{\rm R} = 0\\ j\omega L_{\rm P} + \frac{1}{j\omega C_{\rm R}} + \frac{1}{j\omega C_{\rm P}} = 0\\ \frac{1}{j\omega C_{\rm S}} + j\omega L_{\rm S} = 0 \end{cases}$ (6)

将式(7)代入式(6),电路中相应的电流向量可 进一步简化为:

$$\begin{cases} I_{\rm S} = \frac{[R_{\rm P}(R_{\rm L} + R_{\rm S}) + \omega^2 M^2] U_{\rm in}}{\omega^2 L_{\rm R}^2 (R_{\rm L} + R_{\rm S})} \\ I_{\rm P} = \frac{U_{\rm in} M}{L_{\rm P} (R_{\rm L} + R_{\rm S})} \end{cases}$$
(7)

从式(6)中可以看出,系统可以实现恒压模式的 以及 ZPA 的运行条件。

1.2.2 恒流模式

恒流模式时,系统的等效电路图如图 4 所示,恒 流模式下所提系统为 LCC-CLC 拓扑的 WPT 系统。

图 4 LCC-CLC 补偿网络等效电路图

Fig. 4 LCC-CLC compensation network equivalent circuit diagram

与恒压模式分析方法相同,其补偿参数调谐方 法如下:

$$\begin{cases} \frac{1}{j\omega C_4} + j\omega L_a = 0\\ j\omega L_S + \frac{1}{j\omega C_S} + j\omega L_a = 0\\ \frac{1}{j\omega C_R} + j\omega L_R = 0\\ j\omega L_P + \frac{1}{j\omega C_R} + \frac{1}{j\omega C_P} = 0 \end{cases}$$
(8)

其中电路中相应的电流向量可表示为:

$$\begin{cases} I_{1} = \frac{U_{in}\omega^{2}M^{2}C_{R}^{2}R_{E}}{L_{a}^{2}} \\ I_{o} = \frac{U_{in}\omega MC_{R}}{L_{a}} \end{cases}$$
(9)

从式(9)可看出恒流模式下 ZPA 的运行条件。

1.3 恒流/恒压切换条件分析

由 1.2.1 和 1.2.2 节的分析可知, 基于 LCC-S/CLC 的 WPT 系统从恒流向恒压模式的切换需要通过开

关实现副边补偿拓扑的切换。在进行补偿拓扑的切换时,需保证电池在充电模式之间能够平滑过渡,即 电池充电模式从恒流到恒压的切换过程中负载的输 出功率不能发生剧烈的跳变。因此,需对恒流向恒 压切换时的切换条件进行分析。

$$\begin{cases}
P_{\text{out-CV}} = \frac{V_{\text{out}}^2}{R_{\text{eq}}} = \frac{M^2 V_{\text{ab}}^2}{R_{\text{eq}} L_1^2} \\
P_{\text{out-CC}} = I_{\text{out}}^2 \cdot R_{\text{eq}} = \frac{\omega^2 M^2 C_1^2 V_{\text{ab}}^2 R_{\text{eq}}}{L_2^2}
\end{cases} (10)$$

进而当 P_{out-CC} 与 P_{out-CV} 达到相等时,即可说明此 时负载为恒流向恒压切换的最优负载点。

1.4 耦合器设计

根据图 3 得出效率表达式为:

$$\eta = \frac{\omega^2 M^2 R_{\rm L}}{[R_{\rm p}(R_{\rm L} + R_{\rm S}) + \omega^2 M^2](R_{\rm L} + R_{\rm S})}$$
(11)

根据式(9),求得最优效率互感值表达式为:

$$M_{\rm max} = \sqrt[4]{\frac{\omega^2 R_{\rm P} R_{\rm S} L_1^2}{(R_{\rm P} + R_{\rm L})}}$$
(12)

为增强线圈耦合强度,以更少的二次侧线圈匝 数实现最优效率互感值^[17]。本文利用原边线圈结合 铁氧体的设计,加入非金属磁场材料(MnZn 铁氧体) 可以改善磁场分布情况,收拢磁感线在线圈中间,从 而使得减小线圈匝数,实现线圈小型化设计,铁氧体 相关参数如表1所示。

	表	1	所选用铁氧体相关参数
ah	1	Sel	ected ferrite-related parameters

属性	数值
相对介电常数	40
相对磁导率	3 000
电导率/(S·m ⁻¹)	1/300

根据式(10),求得最优效率互感值为 37.343 μH。 利用 COMSOL 仿真软件,建立如图 5 所示的耦合线 圈机构模型。

如图 6 所示为耦合机构原边侧与副边侧的磁感 应分布图,图 6(a) 与图 6(c) 分别是加入铁氧体前后 的发射侧磁场线分布图,从图 6(b) 与图 6(d) 分别可 以看出加入铁氧体前后接收侧磁场线分布图。在发 射端加铁氧体板后,磁感线确实收拢,更加聚集在线 圈中间,验证了铁氧体确实可以改善线圈间磁场分

布,有助于实现接收端线圈小型化设计。此时,在发 射端加铁氧体板与发射端线圈匝数不变的情况下, 对比之前不加铁氧体时最优互感值的接收端线圈, 加铁氧体后取最优互感值的接收端线圈匝数减少了 5 匝, 匝数总体减少了 25%, 减少的利兹线长度为 3.8 m, 如表 2 所示。由此可见, 接收端加铁氧体的方 法, 使得接收端线圈小型化效果很明显。

2 系统设计参数

2.1 实验设计和数据分析

本文中,耦合器选用圆形线圈,设计接收线圈尺 寸为半径 R=110 mm(15 匝),发射线圈尺寸为半径

表 2 发射端加铁氧体板前后接收端线圈 不同匝数下自感互感值

Tab. 2 Self- inductance and mutual inductance values of the receiving end coils with different turns when a ferrite plate is added at the transmitter end

参数	加入前的值	参数	加入后的值
自感/μH	76.33	自感/µH	45.66
匝数	18	匝数	15
互感/μH	33.34	互感/μH	33.34

R=152 mm (18 匝),利用 COMSOL 仿真软件得到收、 发侧线圈的自感 *L*_s和 *L*_p及其互感 *M*。再根据式(7) 计算出系统中各个补偿元件的参数,具体如表 3 所 示。得到满足此 WPT 系统在满足 ZPA 的条件下实 现恒压的输出。

表 3 电路参数设计

Tab. 5 Circuit parameter design				
	值			
	L _R 补偿电感/µH	33.43		
	$C_{\rm R}$ 并联补偿电容/nF	75.77		
一次侧电路参数	C_p 串联补偿电容/nF	22.6		
	L_p 原边线圈自感/ μ H	112		
	M互感/µH	36.48		
	$C_{\rm s}$ 串联补偿电容/nF	126.65		
	L_s 副边线圈自感/ μ H	20		
二次侧电路参数	C_4 串联补偿电容/nF	16.67		
	C3串联补偿电容/nF	132		
	L_a 并联补偿电感/ μ H	20		

 C₃串联补偿电容/nF
 132

 L_a并联补偿电感/µH
 20

 基于式(1)、式(2)和式(5)对单管 LC 逆变电路

 中的逆变电容 C_x与逆变电感 L_x的分析。由图 7(a)

 可以看出:当逆变电感设置为 4 µH 时,此时系统具

 有较小的电流应力值。图 7(b)对系统 ZVS 的状态

 展开了分析。因此,逆变电容 C_x 在 350 nF 时可以实

现临界 ZVS。 综上,系统的参数以及逆变电路的设置如表 4 所示。N₁为发射线圈的匝数,N₂为接收线圈的匝数, M₂为接收线圈的重量,S₂为接收线圈的面积,d为传 输距离,k为线圈间的耦合系数。

3 实验验证

为验证本文所提拓扑结构的可行性以及电路优 化理论的正确性。依据表 3 及表 4 参数,构建了一 个功率等级为 100 W 的样机,如图 8 所示。

Fig. 7 Parameter design based on the single transistor inverter circuit

表 4 系统和逆变器电路规范的参数

Tab. 4 Parameters of the system and the inverter circuit specification

参数	设计值	参数	设计值
$V_{\rm in}/{ m V}$	25	N_1	18
f_{s}/kHz	100	N_2	15
$V_{\rm out}/{ m V}$	20 ~ 25	M_2/g	102
$P_{\rm out}/{ m W}$	100	R/mm	110/152
$L_{\rm x}/\mu{ m H}$	4	<i>d</i> /cm	4
C_x/nF	300	k	0.25 ~ 0.35

首先,基于开关Q导通时的 ZVS 特性需要被验证。通过其开关管的门极导通电压和漏源极电压波

形如图 9 所示。当开关管导通前,其漏源极电压 *V*_{ds} 已经降为 0。因此,实现了开关管的零电压开通过程, 避免了开关损耗,提升了系统的传输效率。

在实现高频逆变后,能量需要经过补偿网络实现0相位角(Zero Phase Angle, ZPA)传输。此时,系统的无功功率含量为0,系统具有最高的效率。图10(a)与图10(b)为系统的一次侧及二次侧的电压和电流,在恒压电路以及恒流电路中, v_{ab}和 *i*_{ab}相位相同, v_{cd}和 *i*_{cd}相位相同,这意味着系统实现了 ZPA 传输^[18-22]。因此,本文所提的电路参数设计方法的正确性得到

了验证。

系统的恒压特性以及恒流特性也需要被验证。 在图 11 中,负载功率为 100 W,输出电压为 22 V。 当负载电阻由 5 Ω突变为 7 Ω时,输出电压几乎不 发生改变。这意味着本文所提的系统具备恒压特性。 图 11 为系统恒流输出波形。负载功率为 100 W,输 出电流为 5 A,当负载由 4 Ω突变为 7 Ω时,输出电 流保持稳定。这意味着本文所提系统具备恒流特性。 同时,在额定负载的条件下,对系统的效率进行了测 量。可知: 当系统处于恒流状态时,电路效率峰值为

图 8 实验平台 Fig. 8 Experimental platform

图 9 漏极与源极电压 Fig. 9 Drain and source voltage

图 10 原边侧与副边侧电压电流

87.5%。系统处于恒压状态时,效率峰值为92%。这 意味这系统具有较高的效率值。单个晶体管以及 ZVS 的实现为系统高效率提供了条件。

最后,本文对恒流输出切换至恒压输出进行了 验证。图 12 为系统由恒流状态切换为恒压状态时 的实验波形。当系统的运行状态被切换时,系统 的输出功率由 44 W 突变为 40 W, 切换过程没有影 响系统的稳定,且系统的输出效率峰值基本维持 在 92%。

综上所述,实验的结果与仿真结果基本保持一 致。实验结果论证了本文所提基于单管逆变下恒流 恒压输出的无线电能传输系统的可行性。

同时,表5显示了利用闭环控制以及频率切换 方法对 CC/CV 模式进行切换的无线电能传输系 统[23-25]。结果表明,本文所提出的副边拓扑改变对 CC/CV 模式进行切换的方法在基本相同的功率等级 下具有更好的传输效率。因此,采用开环控制以及 副边拓扑切换更具有简单高效性。

如图 13 所示,本论文中无人机无线充电平台可 结合太阳能板以及太阳能发电系统实现户外自主电 能的传输与供给,是能够实现光储荷一体化的无线 充电平台。

图 12 恒压恒流输出切换 Fig. 12 Constant voltage constant current output switching

表 5 用于无人机的各种具有 CC/CV 功能的 无线充电系统比较

Tab. 5 A comparison of various wireless charging systems with CC/ CV capability for UAV

文献	补偿网络	CC/CV实施模型	功率等级/W	系统效率
[23]	LCL/S	闭环控制	126	91.6%(8 cm)
[24]	LCC/S	闭环控制	126	91.8%(7 cm)
[25]	LCL/S-S	频率切换	150	89.7%(2 cm)
本文	LCC-S/CLC	拓扑转换	100	92%(6 cm)

图 13 光伏发电一体无线充电平台 Fig. 13 Integrated wireless charging platform for photovoltaic power generation

4 结论

本文提出了一种可实现恒流/恒压输出切换的拓 扑结构,适用于中小型无人机电池的恒流和恒压两 阶段充电。相比于频率切换以及闭环控制这两种方 法,拓扑结构切换的理论分析更加简洁,电路的状态 也更加稳定。本文中所提出的拓扑结构仅需单个开 关管动作即可实现恒流充电状态到恒压充电状态的 过渡转变,降低了无线充电系统的成本和体积,推动 了无人机无线充电的应用。该系统的恒流和恒压两 阶段的工作模式下均运行于 ZPA 工作状态,改善了 系统的传输效率。本文搭建了100W实验平台,系 统的输出效率峰值基本维持在 92%。实验证明,该 系统从恒流输出状态到恒压输出状态,不存在较大 电压波动和电流波动,体现了系统的稳定性。因此, 本文所提系统能够基本满足实际充电场景中的需求, 并且设计理论对无人机供电系统的安全化及智能化 具有一定的促进作用。

参考文献:

[1] 李阳, 安张磊, 孟航, 等. 基于双耦合线圈的无人机轻量化无线 充电耦合机构设计 [J]. 电源学报, 2023, 21(6): 168-175. DOI:

10.13234/j.issn.2095-2805.2023.6.168.

LI Y, AN Z L, MENG H, et al. Design of lightweight wireless charging coupling mechanism for uavs based on dual coupling coils [J]. Journal of power supply, 2023, 21(6): 168-175. DOI: 10.13234/j.issn.2095-2805.2023.6.168.

- [2] 辛本钊, 马秀娟, 蔡春伟, 等. 基于空间旋转磁场的全方向无人 机无线电能传输系统 [J]. 中国电机工程学报, 2023, 43(12): 4769-4778. DOI: 10.13334/j.0258-8013.pcsee.220002.
 XIN B Z, MA X J, CAI C W, et al. Omnidirectional wireless power transfer system for unmanned aerial vehicle based on spatial rotating magnetic field [J]. Proceedings of the CSEE, 2023, 43(12): 4769-4778. DOI: 10.13334/j.0258-8013.pcsee. 220002.
- [3] BHARADWAJ A, SHARMA A, CHANDUPATLA C R. A switched modular multi-coil array transmitter pad with coil rectenna sensors to improve lateral misalignment tolerance in wireless power charging of drone systems [J]. IEEE transactions on intelligent transportation systems, 2023, 24(2): 2010-2023. DOI: 10.1109/TITS.2022.3220793.
- [4] 蒋文全,高豪云,郑佳秋,等.无人机在民用行业应用研究综述
 [J/OL]. 机电工程技术, 2024: 1-8. (2024-08-20) [2024-09-28].
 http://kns.cnki.net/kcms/detail/44.1522.TH.20240821.0848.002.h
 tml.

JIANG W Q, GAO H Y, ZHENG J Q, et al. Review of researches on the application of drones in the civilian industry [J/OL]. Mechanical & electrical engineering technology, 2024: 1-8. (2024-08-20) [2024-09-18]. http://kns.cnki.net/kcms/detail/44.1522.TH. 20240821.0848.002.html.

[5] SHAO Y X, KANG N, ZHANG H, et al. A lightweight and robust drone MHz WPT system via novel coil design and impedance matching [J]. IEEE transactions on industry applications, 2023, 59(3): 3851-3864. DOI: 10.1109/TIA.2023. 3249146.

[6] 李中启,李晶,全倡辉,等.无线电能传输系统带磁屏蔽任意位置矩形线圈的互感计算[J].电工技术学报,2022,37(17):4294-4305. DOI: 10.19595/j.cnki.1000-6753.tces.211293.
LI Z Q, LI J, QUAN C H, et al. Mutual inductance calculation of arbitrarily positioned rectangular coils with magnetic shielding in wireless power transfer systems [J]. Transactions of China electrotechnical society, 2022, 37(17): 4294-4305. DOI: 10.195 95/j.cnki.1000-6753.tces.211293.

- [7] GU Y, CHEN J, CHANG S Y, et al. Constant power control against *M/R* with expanded PT-symmetric range for wireless inflight charging of drones [J]. IEEE transactions on magnetics, 2023, 59(11): 1-6. DOI: 10.1109/TMAG.2023.3284826.
- [8] GU Y, WANG J, LIANG Z Y, et al. A wireless in-flight charging range extended PT-WPT system using s/single-inductor-doublecapacitor compensation network for drones [J]. IEEE transac-

tions on power electronics, 2023, 38(10): 11847-11858. DOI: 10. 1109/TPEL.2023.3294485.

- [9] 蔡春伟,姜龙云,陈铁,等.基于正交式磁结构及原边功率控制的无人机无线充电系统[J].电工技术学报,2021,36(17): 3675-3684. DOI: 10.19595/j.cnki.1000-6753.tccs.190093.
 CAI C W, JIANG L Y, CHEN Y, et al. Wireless charging system of unmanned aerial vehicle based on orthogonal magnetic structure and primary power control [J]. Transactions of China electrotechnical society, 2021, 36(17): 3675-3684. DOI: 10.195 95/j.cnki.1000-6753.tccs.190093.
- [10] 吉莉, 王丽芳, 廖承林, 等. 基于 LCL 谐振补偿网络的副边自动 切换充电模式无线电能传输系统研究与设计 [J]. 电工技术学 报, 2018, 33(增刊 1): 34-40. DOI: 10.19595/j.cnki.1000-6753. tces.181060.

JI L, WANG L F, LIAO C L, et al. Research and design of automatic alteration between constant current mode and constant voltage mode at the secondary side based on LCL compensation network in wireless power transfer systems [J]. Transactions of China electrotechnical society, 2018, 33(Suppl.1): 34-40. DOI: 10.19595/j.cnki.1000-6753.tces.181060.

- [11] WANG Y, ZHANG H, LU F. Review, analysis, and design of four basic CPT topologies and the application of high-order compensation networks [J]. IEEE transactions on power electronics, 2022, 37(5): 6181-6193. DOI: 10.1109/TPEL.2021. 3131625.
- WU S, CAI C W, LIU X C, et al. Compact and free-positioning omnidirectional wireless power transfer system for unmanned aerial vehicle charging applications [J]. IEEE transactions on power electronics, 2022, 37(8): 8790-8794. DOI: 10.1109/TPEL. 2022.3158610.
- SHEN D, DU G P, ZENG W, et al. Research on optimization of compensation topology parameters for a wireless power transmission system with wide coupling coefficient fluctuation
 IEEE access, 2020, 8: 59648-59658. DOI: 10.1109/ACCESS. 2020.2983612.
- ALI M A, JAMALIPOUR A. Dynamic aerial wireless power transfer optimization [J]. IEEE transactions on vehicular technology, 2022, 71(4): 4010-4022. DOI: 10.1109/TVT.2022. 3147567.
- [15] LUO H, ZANG T L, ZHAO C F, et al. Power boundary controlled single-stage LLC power factor correction converter and its optimal parameter design [J]. IEEE transactions on industrial electronics, 2023, 70(12): 12219-12232. DOI: 10.1109/ TIE.2023.3237887.
- [16] 王春芳, 岳睿, 李厚基, 等. 基于单管电路的恒流恒压无线充电系统研究 [J]. 电工技术学报, 2021, 36(22): 4637-4647, 4657.
 DOI: 10.19595/j.cnki.1000-6753.tces.201589.

WANG C F, YUE R, LI H J, et al. Research on constant-current

and constant-voltage wireless charging system based on singleswitch circuit [J]. Transactions of China electrotechnical society, 2021, 36(22): 4637-4647, 4657. DOI: 10.19595/j.cnki.1000-6753. tces.201589.

[17] 侯信宇,夏卉,石勇.三线圈无线电能传输系统分段补偿技术研究 [J]. 电源学报, 2023, 21(6): 49-56. DOI: 10.13234/j.issn. 2095-2805.2023.6.49.

HOU X Y, XIA H, SHI Y. Research on segmented compensation technology for three-coil WPT system [J]. Journal of power supply, 2023, 21(6): 49-56. DOI: 10.13234/j.issn.2095-2805. 2023.6.49.

 [18] 孙淑彬, 张波, 肖文勋, 等. 恒压输出多负载无线电能传输系统 分析与设计 [J]. 电源学报, 2022, 20(4): 195-206. DOI: 10.
 13234/j.issn.2095-2805.2022.4.195.

SUN S B, ZHANG B, XIAO W X, et al. Analysis and design of constant-voltage-output multi-load wireless power transfer system [J]. Journal of power supply, 2022, 20(4): 195-206. DOI: 10.13234/j.issn.2095-2805.2022.4.195.

[19] 顾靖达,白小会,李伟,等.新型电力系统变电站绿色低碳技术 分析 [J].南方能源建设,2024,11(4):111-117.DOI: 10.16516/ j.ceec.2024.4.11.

GU J D, BAI X H, LI W, et al. Analysis on green and low carbon technologies for new power system substations [J]. Southern energy construction, 2024, 11(4): 111-117. DOI: 10.16516/j.ceec. 2024.4.11.

 [20] 周行, 李少华, 王慧, 等. 光伏耦合电解水制氢系统的建模与仿 真[J]. 南方能源建设, 2023, 10(3): 104-111. DOI: 10.16516/j. gedi.issn2095-8676.2023.03.011.
 ZHOU H, LI S H, WANG H, et al. Modelling and simulation of

photovoltaic coupling water electrolysis hydrogen production system [J]. Southern energy construction, 2023, 10(3): 104-111. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.011.

- [21] 王浩然, 冯天天, 崔茗莉, 等. 碳交易政策下绿氢交易市场与电力市场耦合效应分析 [J]. 南方能源建设, 2023, 10(3): 32-46.
 DOI: 10.16516/j.gedi.issn2095-8676.2023.03.004.
 WANG H R, FENG T T, CUI M L, et al. Analysis of coupling effect between green hydrogen trading market and electricity market under carbon trading policy [J]. Southern energy construction, 2023, 10(3): 32-46. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.004.
- [22] 蔡高凤, 王庆斌, 陈镇宇, 等. 基于离散小波变换和 GRU 的触 电诊断分析 [J]. 南方能源建设, 2024, 11(4): 127-136. DOI: 10. 16516/j.ceec.2024.4.13.
 CAI G F, WANG Q B, CHEN Z Y, et al. Analysis on electrocution diagnosis based on discrete wavelet transform and GRU [J]. Southern energy construction, 2024, 11(4): 127-136. DOI: 10.16516/j.ceec.2024.4.13.

[23] LI Z J, HE J F, HUO Y S, et al. High-misalignment tolerance and

output adjustable wireless charging system via detuned seriesseries compensated reconfigurable transmission channels [J]. IEEE transactions on power electronics, 2023, 38(10): 11786-11801. DOI: 10.1109/TPEL.2023.3281721.

 [24] 李振杰, 霍玉昇, 何家房, 等. 兼具强抗偏移性与功率可控性的 可重构无线充电系统研究 [J]. 电源学报, 2023, 21(6): 24-34.
 DOI: 10.13234/j.issn.2095-2805.2023.6.24.

LI Z J, HUO Y S, HE J F, et al. Research on reconfigurable wireless charging system with strong anti-misalignment capability and power controllability [J]. Journal of power supply, 2023, 21(6): 24-34. DOI: 10.13234/j.issn.2095-2805.2023.6.24.

[25] LIU Z X, SU M, ZHU Q, et al. A dual frequency tuning method for improved coupling tolerance of wireless power transfer system [J]. IEEE transactions on power electronics, 2021, 36(7): 7360-7365. DOI: 10.1109/TPEL.2020.3043784.

作者简介:

赵航(第一作者)

1987-, 男, 硕士, 工程师, 主要研究方向为电 力电子技术在电力体统中的应用(e-mail) yuµHang@vip.qq.com。

贾静

1994-, 女, 硕士, 工程师, 主要研究方向为新能源接入电网分析 (e-mail)1461643990@qq.com。

杨哲

1986-, 男, 硕士, 高级工程师, 主要研究方向为系统工程、分布 式网络计算(e-mail)shhhenlan@163.com。

张力月

1991-, 女, 学士, 工程师, 主要研究方向为网络信息安全(e-mail) zhoulei@xy.sn.sgcc.com.cn。

杨磊(通信作者)

1986-,男,博士,副教授,主要研究方向为无线 电能传输(e-mail)yanglei0930@xaut.edu.cn。

陈团

2002-, 男, 学士, 主要研究方向为无线电能传输(e-mail) 25921 34096@qq.com。

项目简介:

项目名称国家电网有限公司科技项目"电力巡检无人机高自由度平 台化无线供电系统"(5226XY240001)

承担单位 国网陕西省电力有限公司

项目概述本项目从复杂环境中无线电能传输机理出发,以电力巡检无 人机为研究背景,提出了平台式多相耦合线圈高功率无线供电系统。 该系统可以同时实现对多台无人机的快速无线供电。结合复合的供 电电源实现对无人机的安全和稳定供电。主要研究内容包括:(1)动 态环境下无人机无线充电机制;(2)多相耦合机构平台式高功率无线 供电方法;(3)复杂环境下无人机无线供电系统电池高效管理;(4)无 人机无线供电系统源-储-荷能量调控策略。

主要创新点(1)基于多相线圈耦合的高功率无线电能传输方法;(2)平 台式多无人机无线供电模式;(3)就地取电和储能相结合的综合能源 供应策略。

(责任编辑 孙舒)