• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计及限流—储能协调控制的高渗透率微电网故障穿越能力探讨

陈磊 郭芳

陈磊, 郭芳. 计及限流—储能协调控制的高渗透率微电网故障穿越能力探讨[J]. 南方能源建设, 2015, 2(2): 20-27. doi: 10.16516/j.gedi.issn2095-8676.2015.02.004
引用本文: 陈磊, 郭芳. 计及限流—储能协调控制的高渗透率微电网故障穿越能力探讨[J]. 南方能源建设, 2015, 2(2): 20-27. doi: 10.16516/j.gedi.issn2095-8676.2015.02.004
Lei CHEN, Fang GUO. Study on the Fault Ride-through Capability of High Penetration Micro-grid Considering Coordinated Control of Fault Current Limiter and Energy Storage[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(2): 20-27. doi: 10.16516/j.gedi.issn2095-8676.2015.02.004
Citation: Lei CHEN, Fang GUO. Study on the Fault Ride-through Capability of High Penetration Micro-grid Considering Coordinated Control of Fault Current Limiter and Energy Storage[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(2): 20-27. doi: 10.16516/j.gedi.issn2095-8676.2015.02.004

计及限流—储能协调控制的高渗透率微电网故障穿越能力探讨

doi: 10.16516/j.gedi.issn2095-8676.2015.02.004
基金项目: 

武汉市科学技术计划资助项目 青年晨光基金,2013072304010827

湖北省自然科学基金资助项目 2014CFB706

详细信息
    作者简介:

    陈磊(1982),男,湖北荆州人,讲师,博士后,主要从事故障限流技术及智能电网的研究工作(e-mail)stclchen1982@163.com。

  • 中图分类号: TM727

Study on the Fault Ride-through Capability of High Penetration Micro-grid Considering Coordinated Control of Fault Current Limiter and Energy Storage

  • 摘要: 高渗透微电网在短路故障时的应对机制及暂态性能将对配电网的运行产生重要影响,确保故障下微电网与配电网的安全可靠运行具有极强的理论和现实意义。解析了不同故障位置下微电网的应对处理机制,并提出了一种结合故障限流器与储能装置的协调控制理念,以期使高渗透微电网在无需孤岛运行时实现故障穿越,在应转为孤岛运行时实现平稳过渡。在此基础上,针对国内外的相关研究现状开展了概述及分析,并以某微电网系统范例为具体对象,验证了限流-储能协调控制在强化微电网暂态性能的有效性和可行性。
  • 图  1  系统级微电网接入主电网的结构示意图

    Fig.  1  Sketch Map of a System-level Micro-grid Connected to the Main Network.

    图  2  基于快速开关的磁通耦合型故障限流器

    Fig.  2  Structure of the Modified Flux-Coupling Type SFCL.

    图  3  故障限流器在某简单风储微电网中的应用

    Fig.  3  Schematic Diagram of a Typical Micro-Grid System Connected to the Main Network Through the SFCL

    图  4  计及故障限流动作的储能变流器控制策略

    Fig.  4  Basic Control Block Diagram of the Energy Storage Device in Consideration of the SFCL′S Action Status

    图  5  F1点故障下PCC电流及电压特性(微电网侧)

    Fig.  5  PCC Characteristics of the Micro-grid System Under the K1 Point Grounded

    图  6  F1点故障下分布式电源的功率输出特性

    Fig.  6  Power Output Characteristics of the Energy Storage and Wind Generation Under The K1 Point Grounded

    图  7  F2点故障下PCC电流及电压特性(微电网侧)

    Fig.  7  PCC Characteristics of the Micro-grid System Under the K2 Point Grounded

    图  8  F2点故障下分布式电源功率及频率特性

    Fig.  8  Power-frequency Characteristics of the Micro-grid System Under the K2 Point Grounded

    表  1  仿真系统主要参数

    Tab.  1.   Main Simulation Parameters of The System Model and the SFCL

    Demonstrated Micro-grid System
    储能系统 1 000 Ah
    同步发电机 50 kW
    风电 260 kW
    负载1/负载2 350 kW/ 150 kW
    电压/频率 0.4 kV/ 50 Hz
    Modified Flux-coupling Type SFCL
    变比(L1/L2) 1
    耦合系数 0.99
    二次侧电感 15 mH
    超导线圈电阻RSC 2 Ω
    下载: 导出CSV
  • [1] LASSETER R H. Smart Distribution: Coupled Microgrids [J]. Proceedings of the IEEE, 2011, 99(6): 1074-1082.
    [2] 王成山. 微网专题介绍 [J]. 中国电机工程学报,2012, 32(25):1-6.

    WANG Chengshan. Special Subject Introduction of Micro-grid [J]. Proceeding of the CSEE, 2012, 32(25):1-6.
    [3] 艾芊,王兆宇. 分布式发电与智能电网 [M]. 上海:上海交通大学出版社,2013.
    [4] WANG Chengshan, LI Yan, PENG Ke, et al. Coordinated Optimal Design of Inverter Controllers in a Micro-grid with Multiple Distributed Generation Units [J]. IEEE Transactions on Power Systems, 2013, 28(3): 2679-2687.
    [5] 茆美琴,金鹏,奚媛媛,等. 基于多因子和合同网协调机制的微网多Agent混和能量管理方法 [J]. 中国电机工程学报,2014, 34(31): 5542-5552.

    MAO Meiqin, JIN Peng, XI Yuanyuan, et al. Method of Multi-agent Hybrid Energy Management for Microgrids Based on Multi-factor Evaluation and Contract Net Protocol Cooperative Mechanism [J]. Proceeding of the CSEE, 2014, 34(31):5542-5552.
    [6] 冯兴田. 高渗透分布式发电下配电网电压质量的改善研究[D]. 北京:中国科学院研究生院,2012.
    [7] 童荣斌,牟龙华,庄伟. 新型微电网外部短路故障保护方案 [J]. 电力系统保护与控制,2014, 42(5): 78-84.

    TONG Rongbin, MU Longhua, ZHUANG Wei. New Protection Scheme for External Short-circuit Fault of Microgrid [J]. Power System Protection and Control, 2014, 42(5): 78-84.
    [8] IEEE 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems [S].
    [9] 章桢,陆于平,李然. 基于“充分式”电流综合比幅判据的含DG配网保护 [J]. 电网技术,2014, 38(12): 3495-3501.

    ZHANG Zhen, LU Yuping, LI Ran. Protection for Distribution Network Containing Distributed Generations Based on Sufficient Synthetic Criterion of Current Amplitude Comparison [J]. Power System Technology, 2014, 38(12): 3495-3501.
    [10] SORTOMME E, VENKATA S S, MITRA J. Microgrid Protection Using Communication-assisted Digital Relays [J]. IEEE Transactions on Power Delivery, 2009, 25(4): 2789-2796.
    [11] KAHROBAEIAN A, MOHAMED Y A R I. Analysis and Mitigation of Low-frequency Instabilities in Autonomous Medium-voltage Converter-based Microgrids With Dynamic Loads [J]. IEEE Transactions on Industrial Electronics, 2014, 61(4): 1643-1658.
    [12] 张建华,黄伟. 微电网运行控制与保护技术 [M]. 北京:中国电力出版社,2012.
    [13] RASHAD M K. Three Fault Ride Through Controllers for Wind Systems Running in Isolated Micro-grid and Effects of Fault Type on Their Performance: A Review and Comparative Study [J]. Renewable and Sustainable Energy Reviews, 2014, 37: 698-714.
    [14] RASHID G, ALI M H. A Modified Bridge-type Fault Current Limiter for Fault Ride-through Capacity Enhancement of Fixed Speed Wind Generator [J]. IEEE Transactions on Energy Conversion, 2014, 29(2): 527-534.
    [15] 王成山. 微电网分析与仿真理论 [M]. 北京:科学出版社,2013.
    [16] 李庆民,娄杰,张黎,等. 电力系统经济型故障限流技术 [M]. 北京:机械工业出版社,2011.
    [17] 周林,黄勇,郭珂,等. 微电网储能技术研究综述 [J]. 电力系统保护与控制,2011, 39(7): 147-152.

    ZHOU Lin, HUANG Yong, GUO Ke, et al. A Survey of Energy Storage Technology for Micro Grid [J]. System Protection and Control, 2011, 39(7): 147-152.
    [18] 姚勇,朱桂萍,刘秀成. 电池储能系统在改善微电网电能质量中的应用 [J]. 电工技术学报,2012, 27(1): 85-89.

    YAO Yong, ZHU Guiping, LIU Xiucheng. Improvement of Power Quality of Micro-grids by Battery Energy Storage System [J]. Transactions of China Electrotechnical Society, 2012, 27(1): 85-89.
    [19] SHADMAND M B, BALOG R S, JOHNSON M D. Predicting Variability of High-penetration Photovoltaic Systems in a Community Microgrid by Analyzing High-temporal Rate Data [J]. IEEE Transactions on Sustainable Energy, 2014, 5(4): 1434-1442.
    [20] SHAMSI Pourya, FAHIMI Babak. Stability Assessment of a DC Distribution Network in a Hybrid Micro-grid Application [J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2527-2534.
    [21] 赵波,薛美东,陈荣柱,等. 高可再生能源渗透率下考虑预测误差的微电网经济调度模型 [J]. 电力系统自动化,2014, 38(7): 1-8.

    ZHAO Bo, XUE Meidong, CHEN Rongzhu, et al. An Economic Dispatch Model for Microgrid with High Renewable Energy Resource Penetration Considering Forecast Errors [J]. Automation of Electric Power Systems, 2014, 38(7): 1-8.
    [22] 梁明辉. 微网故障特性分析和保护原理研究 [D]. 武汉:华中科技大学,2011.
    [23] GENG H, LIU C, Yang G. LVRT Capability of DFIG-based WECS Under Asymmetrical Grid Fault Condition[J]. IEEE Transactions on Industrial Electronics, 2013, 60(7): 2495-2509.
    [24] XIAO S, YANG G, ZHOU H, et al. Analysis of the Control Limit for Rotor-side Converter of Doubly Fed Induction Generator-based Wind Energy Conversion System Under Various Voltage Dips [J]. IET Renewable Power Generation, 2013, 7(1): 71-81.
    [25] VIDAL J, ABAD G, ARZA J, et al. Single-phase DC Crowbar Topologies for Low Voltage Ride Through Fulfillment of High-power Doubly Fed Induction Generator-based Wind Turbines [J]. IEEE Transactions on Energy Conversion, 2013, 28(3): 768-781.
    [26] SHI Jing, TANG Yuejin, XIA Yajun, et al. SMES Based Excitation System for Doubly-fed Induction Generator in Wind Power Application [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1105-1108.
    [27] ELSHIEKH M E, MANSOUR D A, AZMY A M,et al. Improving Fault Ride-through Capability of DFIG-based Wind Turbine Using Superconducting Fault Current Limiter [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5601204.
    [28] GUO W, XIAO L, DAI S, et al. LVRT Capability Enhancement of DFIG with Switch-type Fault Current Limiter [J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 332-342.
    [29] CHEN Lei, DENG Changhong, ZHENG Feng, et al. Fault Ride-Through Capability Enhancement of DFIG-Based Wind Turbine with a Flux-coupling Type SFCL Employed at Different Locations [J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 5201505.
    [30] 吕婷婷,段玉兵,龚宇雷,等. 微电网故障暂态分析及抑制方法研究 [J]. 电力系统保护与控制,2011, 39(2): 102-107.

    LÜ Tingting, DUAN Yubing, GONG Yulei, et al. Analysis of Micro-grid Based Fault Transient and Its Supression [J]. Power System Protection and Control, 2011, 39(2): 102-107.
    [31] EBRAHIMPOUR Majid, VAHIDI Behrooz, HOSSEINIAN Seyed Hossein. A Hybrid Superconducting Fault Current Controller for DG Networks and Microgrids [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(5): 5604306.
    [32] GHANBARI Teymoor, FARJAH Ebrahim. Development of an Efficient Solid-state Fault Current Limiter for Microgrid [J]. IEEE Transactions on Power Delivery, 2012, 27(4): 1829-1834.
    [33] GHANBARI Teymoor, FARJAH Ebrahim. Unidirectional Fault Current Limiter: An Efficient Interface Between the Microgrid and Main Network [J]. IEEE Transactions on Power Systems, 2013, 28(2): 1591-1598.
    [34] GHANBARI Teymoor, FARJAH Ebrahim. A Multiagent-based Fault-current Limiting Scheme for the Microgrids [J]. IEEE Transactions on Power Delivery, 2014, 29(2): 525-533.
    [35] KHAN U A, SHIN W J, SEONG J K, et al. Feasibility Analysis of the Application and Positioning of DC HTS FCL in a DC Microgrid Through Modeling and Simulation Using Simulink and SimPowerSystem [J]. Physica C: Superconductivity and its Applications, 2011(471): 1322-1326.
    [36] HWANG Jae Sang, KHAN U.A, SHIN Woo Ju, et al. Validity Analysis on the Positioning of Superconducting Fault Current Limiter in Neighboring AC and DC Microgrid [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5600204.
    [37] CHEN Lei, DENG Changhong, GUO Fang, et al. Reducing the Fault Current and Overvoltage in a Distribution System with Distributed Generation Units Through an Active Type SFCL [J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 5600305.
    [38] ZHAO Caihong, WANG Zikai, ZHANG Dong, et al. Development and Test of a Superconducting Fault Current Limiter-magnetic Energy Storage (SFCL-MES) System [J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2014-2017.
    [39] GUO W Y, XIAO L Y, DAI S T. Enhancing Low-voltage Ride-through Capability and Smoothing Output Power of DFIG with a Superconducting Fault-current Limiter-magnetic Energy Storage System [J]. IEEE Transactions on Energy Conversion, 2012, 27(2): 277-295.
    [40] NGAMROO I, VACHIRASRICIRIKUL S. Coordinated Control of Optimized SFCL and SMES for Improvement of Power System Transient Stability [J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 5600805.
    [41] NGAMROO I, VACHIRASRICIRIKUL S. Optimized SFCL and SMES Units for Multimachine Transient Stabilization Based on Kinetic Energy Control [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5000309.
    [42] NGAMROO I, KARAIPOOM T. Cooperative Control of SFCL and SMES for Enhancing Fault Ride Through Capability and Smoothing Power Fluctuation of DFIG Wind Farm [J]. IEEE Transactions on Applied Superconductivity, 2014, 24(5): 5400304.
    [43] ZHENG Feng, DENG Changhong, CHEN Lei, et al. Transient Performance Improvement of Micro-grid by a Resistive Superconducting Fault Current Limiter [J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 5602305.
    [44] CHEN Lei, ZHENG Feng, DENG Changhong, et al. Application of a Modified Flux-coupling Type Superconducting Fault Current Limiter to Transient Performance Enhancement of Micro-grid [J]. Physica C: Superconductivity and Its Applications, to be Published, DOI:  10.1016/j.physc.2015.02.051.
    [45] DENG Changhong, ZHENG Feng, CHEN Lei, et al. Study of a Modified Flux-coupling-type Superconducting Fault Current Limiter for Mitigating the Effect of DC Short Circuit in a VSC-HVDC System[J]. Journal of Superconductivity & Novel Magnetism, 2015,28(5):1525-1534, DOI:  10.1007/s10948-014-2948-7.
    [46] CHEN Lei, PAN Hao, DENG Changhong, et al. Study on the Application of a Flux-coupling Type Superconducting Fault Current Limiter for Decreasing HVDC Commutation Failure [J]. Canadian Journal of Electrical and Computer Engineering, 2015, 38(1): 10-19.
    [47] CHEN Lei, PAN Hao, DENG Changhong, et al. Coordination Between Substation Area Backup Protection and Flux-coupling Type Superconducting Fault Current Limiter Considering Network Communications [J]. Journal of Communications, 2014, 9(9): 672-679.
  • [1] 程媛, 张健韬, 李仲强, 徐强, 程瑶.  变电站直流系统接地故障查找策略综述 . 南方能源建设, 2023, 10(5): 57-64. doi: 10.16516/j.gedi.issn2095-8676.2023.05.008
    [2] 劳志烜, 郑炳耀, 郭芳, 梅洪灯, 朱文峰, 王瑞阳, 方俊杰.  基于故障电流控制的直流微网过电流保护研究 . 南方能源建设, 2023, 10(5): 65-71. doi: 10.16516/j.gedi.issn2095-8676.2023.05.009
    [3] 林聪, 李湘峰, 郭芳.  直流微电网的故障电流控制器研究 . 南方能源建设, 2023, 10(5): 50-56. doi: 10.16516/j.gedi.issn2095-8676.2023.05.007
    [4] 初岳峰, 王凯, 肖忠铭, 徐天殷, 郭志群.  海上风电船机与风电设备故障分析及应对策略综述 . 南方能源建设, 2022, 9(1): 9-19. doi: 10.16516/j.gedi.issn2095-8676.2022.01.002
    [5] 闫琪, 张延泽, 陈小月, 王羽.  一起现场TEV引起的法兰故障 . 南方能源建设, 2022, 9(S1): 83-91. doi: 10.16516/j.gedi.issn2095-8676.2022.S1.013
    [6] 姬海波, 荆茂林, 张恒.  CPR1000机组RGL系统双夹持故障分析 . 南方能源建设, 2022, 9(2): 101-106. doi: 10.16516/j.gedi.issn2095-8676.2022.02.014
    [7] 谢楠, 杨沛豪, 何萍, 陈垚.  基于虚拟阻抗的储能微网VSG控制策略研究 . 南方能源建设, 2022, 9(S2): 90-97. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.015
    [8] 孙浩程, 魏厚俊, 胡鋆, 陈曦, 王云芳, 韩玉鑫, 刘畅.  电化学储能技术在火电厂中应用研究综述 . 南方能源建设, 2022, 9(4): 63-69. doi: 10.16516/j.gedi.issn2095-8676.2022.04.008
    [9] 邵建林, 郑明辉, 郭宬昊, 闫梦迪, 夏子晴, 许宏鹏, 魏书洲.  双碳目标下燃煤热电联产机组储能技术应用分析 . 南方能源建设, 2022, 9(3): 102-110. doi: 10.16516/j.gedi.issn2095-8676.2022.03.012
    [10] 巫聪云, 刘斌, 沈梓正, 颜丽, 廖晓春.  基于边缘计算的故障录波主站信息快速智能处理方法 . 南方能源建设, 2021, 8(2): 91-98. doi: 10.16516/j.gedi.issn2095-8676.2021.02.014
    [11] 姜绍艳, 李京平, 蔡志平.  智能分布式加电压-时间型双策略就地故障判别方法 . 南方能源建设, 2020, 7(S1): 48-52. doi: 10.16516/j.gedi.issn2095-8676.2020.S1.009
    [12] 周钰, 张浩, 陈锐, 鲁丽娟, 施世鸿.  直流微电网控制保护策略研究 . 南方能源建设, 2020, 7(4): 61-66. doi: 10.16516/j.gedi.issn2095-8676.2020.04.009
    [13] 周冰.  海上风电机组智能故障预警系统研究 . 南方能源建设, 2018, 5(2): 133-137. doi: 10.16516/j.gedi.issn2095-8676.2018.02.019
    [14] 曲海, 马朋.  基于广域测量系统的UPFC协调控制方案探讨 . 南方能源建设, 2017, 4(3): 58-62,57. doi: 10.16516/j.gedi.issn2095-8676.2017.03.011
    [15] 林伟波, 罗颖坚.  滑压、凝结水控制技术及协调控制系统优化策略 . 南方能源建设, 2017, 4(3): 53-57. doi: 10.16516/j.gedi.issn2095-8676.2017.03.010
    [16] 董云龙, 胡兆庆, 田杰, 李海英.  多端柔性直流控制保护系统架构和策略 . 南方能源建设, 2016, 3(2): 21-26. doi: 10.16516/j.gedi.issn2095-8676.2016.02.004
    [17] 许树楷, 罗雨.  背靠背输电系统中柔性直流与常规直流的协调控制策略 . 南方能源建设, 2016, 3(2): 9-15. doi: 10.16516/j.gedi.issn2095-8676.2016.02.002
    [18] 郭金川, 贺艳芝, 郭芳, 伦振坚.  Operation Performances Enhancement of Micro-grid by Battery Energy Storage System . 南方能源建设, 2015, 2(2): 35-40. doi: 10.16516/j.gedi.issn2095-8676.2015.02.006
    [19] 伦振坚, 胡轲, 郭金川, 郭芳.  微电网中电池储能系统的容量优化配置方法研究 . 南方能源建设, 2015, 2(S1): 5-9. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.002
    [20] 石晶, 龚康, 刘洋, 王姝.  复合储能在微网中的应用研究 . 南方能源建设, 2015, 2(2): 28-34. doi: 10.16516/j.gedi.issn2095-8676.2015.02.005
  • 加载中
图(8) / 表 (1)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  58
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-01
  • 刊出日期:  2015-06-25

计及限流—储能协调控制的高渗透率微电网故障穿越能力探讨

doi: 10.16516/j.gedi.issn2095-8676.2015.02.004
    基金项目:

    武汉市科学技术计划资助项目 青年晨光基金,2013072304010827

    湖北省自然科学基金资助项目 2014CFB706

    作者简介: 作者简介:陈磊(1982),男,湖北荆州人,讲师,博士后,主要从事故障限流技术及智能电网的研究工作(e-mail)stclchen1982@163.com。

  • 中图分类号: TM727

摘要: 高渗透微电网在短路故障时的应对机制及暂态性能将对配电网的运行产生重要影响,确保故障下微电网与配电网的安全可靠运行具有极强的理论和现实意义。解析了不同故障位置下微电网的应对处理机制,并提出了一种结合故障限流器与储能装置的协调控制理念,以期使高渗透微电网在无需孤岛运行时实现故障穿越,在应转为孤岛运行时实现平稳过渡。在此基础上,针对国内外的相关研究现状开展了概述及分析,并以某微电网系统范例为具体对象,验证了限流-储能协调控制在强化微电网暂态性能的有效性和可行性。

English Abstract

陈磊, 郭芳. 计及限流—储能协调控制的高渗透率微电网故障穿越能力探讨[J]. 南方能源建设, 2015, 2(2): 20-27. doi: 10.16516/j.gedi.issn2095-8676.2015.02.004
引用本文: 陈磊, 郭芳. 计及限流—储能协调控制的高渗透率微电网故障穿越能力探讨[J]. 南方能源建设, 2015, 2(2): 20-27. doi: 10.16516/j.gedi.issn2095-8676.2015.02.004
Lei CHEN, Fang GUO. Study on the Fault Ride-through Capability of High Penetration Micro-grid Considering Coordinated Control of Fault Current Limiter and Energy Storage[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(2): 20-27. doi: 10.16516/j.gedi.issn2095-8676.2015.02.004
Citation: Lei CHEN, Fang GUO. Study on the Fault Ride-through Capability of High Penetration Micro-grid Considering Coordinated Control of Fault Current Limiter and Energy Storage[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(2): 20-27. doi: 10.16516/j.gedi.issn2095-8676.2015.02.004
  • 在能源需求与环境保护的双重压力下,国内外都将目光投向可再生能源分布式发电(Distributed Generation,DG)研究领域,构建可持续能源系统成为各国的共识与必然发展趋势[1-2]。作为集中式发电的有效补充,分布式发电技术正得到越来越广泛的应用,而日益增多的各种分布式电源并网也对电力系统运行提出了更大的挑战。现有研究和实践结果表明[3-5],将风力发电、太阳能光伏、燃料电池等DG连接储能装置及负荷组成微电网形式运行,可充分发挥可再生能源发电的效能与优势,有助于电网灾变时向重要负荷持续稳定供电,避免间歇式电源的功率波动对外部配电网及周边用户电能质量的直接影响,具有良好的推广价值及极强的现实意义。自2013年9月起,中国正式启动创建100座“新能源示范城市”,微电网面临良好的发展机遇,在“十二五”期间,微电网的市场规模年均增长率约为8%左右。微电网的高渗透率接入已受到越来越多的关注。

    事实上,当微电网以高渗透率形式(通常意义上指交换功率的比例超过配电网容量的10%[6])接入到主网络时,微电网将对相连配电网的运行特性产生重要影响,特别是在发生短路故障时,微电网的应对处理方式将直接影响到配电网的动态特性,如何保障故障情况下高渗透微电网与配电网的安全可靠运行是微电网发展的关键问题之一。

    • 图1为某系统级微电网接入配电网的典型结构示意图,该结构适用于接入大规模DG,负荷与DG以公共耦合点(Point of Common Coupling,PCC)的形式存在于微电网。当短路故障点位于微电网内部时,例如F1位置,可由外部配电网提供足够大的短路电流,微电网内部保护准确动作以快速隔离故障区域,使得微电网和配电网能够持续保持连接,实现故障穿越运行[7]

      图  1  系统级微电网接入主电网的结构示意图

      Figure 1.  Sketch Map of a System-level Micro-grid Connected to the Main Network.

      当短路故障发生在微电网外部时,微电网究竟应作故障穿越还是孤岛运行,目前学术界和工程实际中均未有明确的处理策略和解决方案。IEEE 1 547标准规定了分布式电源应对主网故障时的退出条件,但是分布式电源以微电网的形式并网后,情况出现了较大差异[8-9]。若发生任意外部故障就触动PCC联络线上的开关以隔离微电网,对微电网运行的可靠性和灵活性无疑会带来负面影响,并且在某种意义上也不符合组建微电网的初衷。

      1)故障发生在PCC联络线上,例如F2位置。出于保护切除短路故障的需要,必须将微电网从主系统中分离出来[10]。在微电网切换至孤岛运行的过程中,应保证并网与离网之间暂态过渡的平稳性。

      2)故障发生在配电系统侧。当微电网接入的上级线路发生故障时,例如F3位置,为防止微电网对重合闸造成冲击并考虑非同期合闸等问题,初步可作孤岛运行处理。若故障出现在其他位置,例如F4、F5位置,此时决定微电网故障穿越或孤岛运行的主导因素应为:微电网与主系统之间的功率交换量。就高渗透微电网而言,从提高可再生能源的利用率出发[11-12],计及在故障情况下其对配电网的电源支持,并有利于避免电网功率缺额的进一步扩大,辅助此类微电网实现故障穿越对系统安全可靠运行是有益处的。

      故障限流器(Fault Current Limiter,FCL)是目前常用于提高电网系统及其电源设备故障穿越能力的辅助装置[13-14],而在包含高渗透微电网的配电网中应用FCL时,对限流率的要求有别于大电网系统中需将10~20倍的短路电流降低在断路器遮断容量之下。微电网通常由占比成分较高的逆变器型DG组成,或包含一定比例的直接并网型DG,在短路时尽管冲击系数不高,但故障电流峰值可达到几十kA的水平[15]。考虑到限流器安装于微电网与配电网的PCC联络线处时,除可降低微电网供给的短路电流外,还能抑制因外部故障导致的PCC电压跌落,从而提升微电网内部DG的低电压穿越能力,在成本经济合理和技术方案可行的情况下,应用一种经济型限流器将更具备实用性和推广性。李庆民等(2011)曾对经济型限流器的内涵做了定义[16],其泛指非电力电子式、非超导式的故障限流技术方案。随着当前功率器件及高温超导材料造价的进一步下降,适当使用混合型材料组建FCL,在可控成本内也应将其归结到经济型限流器的范畴。

      此外,微电网内部通常配置有储能装置,其基本用途包括有:提供短时供电、电力调峰、提升微电源性能等,并在平抑微电网内部功率波动、提高电能质量水平上有很强的功效[17-18]。当经济型故障限流技术应用于高渗透微电网后,可进一步联同储能系统开展协调控制研究,深化融合限流-储能的技术优势,兼顾其双方所长,这对于强化高渗透微电网与配电网在故障工况下的供电可靠性及运行稳定性无疑会起到更为有效的功效。

      限流-储能的协调控制的主旨理念:期望在限制故障电流幅值、减小耦合点电压跌落的同时,也在平抑功率波动和提高电能质量方面起到积极作用。从而,使得微电网在无需孤岛运行时因暂态性能满足技术要求而实现故障穿越;当微电网应转为孤岛运行时,限流-储能的协调有助于降低PCC开关动作时引起的冲击振荡,并实现微电网并网/孤岛间平稳的暂态过渡,此时故障限流器需同联络线保护的动作方式和定值相配合,保证其可靠识别外部故障不拒动。从提升高渗透微电网应对外部短路故障的灵动性而言,限流-储能的协调将发挥更为完善的辅助作用。

    • 据《2012-2016年中国微电网行业深度调研与可行性分析报告》显示,当前针对微电网的研究总体还处于探索攻坚阶段,且多围绕于微电网的经济运行、优化调度、并网控制及保护配合等层面开展相关工作,关于限流技术在微电网的应用刚刚起步,未见公开资料研究限流-储能协调技术以提高微电网的故障穿越特性及其在转孤岛运行时的暂态性能。通过对可查文献的调研及梳理,本文分别从高渗透微电网的故障穿越、限流技术应用及其与储能系统的协调配合等三个方面,对国内外研究现况进行概述。

    • 针对于微电网以高渗透率形式接入配电网所引发的相关问题,已有研究成果多集中于含微电网的配电网稳定性分析及微电网优化调度模型的建立等方面[19-21],至于高渗透微电网的故障穿越问题研究还处于探索阶段。文献[22]曾简要阐述了微电网在故障工况下穿越或孤岛运行的大体准则,并就相关保护配置方法进行了改进,但并未给出一种有效的措施手段以辅助微电网实现故障穿越或提高其孤岛运行时的暂态性能。

      尽管当前面向微电网的故障穿越研究较为缺乏,但是针对风电、光伏等逆变器接入型DG的故障(低电压)穿越特性已开展了大量工作,可做一定的参考和借鉴。国内外专家学者所使用的技术手段大致可归纳为软件法和硬件法,前者依赖于对变流器控制策略的改善[23-24],可带来一定的积极效应,然而对于严重故障下的性能强化作用较为有限;后者则通过在回路中装设crowbar电阻、快速储能、故障限流器等硬件辅助设备[25-28],实现在故障暂态期间抑制电压降落和减小输出功率波动。本课题组(2014)曾研究了磁通耦合型限流器对双馈风机故障穿越特性的影响[29],考虑将限流器分别安装于双馈风机的转子侧或定子侧,并进行理论推导与仿真分析,验证了限流器应用的可行性。

    • 围绕限流技术在微电网中的应用,国内学者目前开展了较为基础的理论分析和仿真建模研究。相比而言,国外针对微电网的故障限流研究已取得了一些有益成果,重点集中在限流实现机理、保护配合及优化选址等方面。

      山东大学电气工程学院的学者(2011)建立了包含电感型故障限流器的微电网简化模型,计及运行模式及短路类型、发生地点的不同,仿真分析了含限流器的微电网故障暂态特性[30],研究结果表明:限流器的应用可帮助微电网在故障发生后较迅速地过渡至稳定运行状态,为微电网的故障暂态抑制提供了一种可行的应对措施。Majid Ebrahimpour等(2013)提出在微电网装设一种混合型超导限流器[31],研究结果表明:此混合型超导限流器可灵活有效地处理不同短路故障工况,并避免因故障限流率过高而对继电保护带来的不利影响。然而,上述文献中涉及的微电网模型过于简化,同步型DG占比过高且未考虑储能系统的相关控制效应。

      Teymoor Ghanbari等(2012,2013)提出了一种适用微电网的新型固态限流器,该限流器具备自控制和外部控制两种模式,通过在电磁暂态仿真程序中模拟其动作特性与限流表现,表明其响应速度快、限流效果明显,在某种程度上可解决微电网与配电网之间的保护配合问题[32-33]。此外,Teymoor Ghanbari等(2014)还设计了一种基于多Agent的故障限流方案[34],通过多代理技术快速定位微电网系统故障,并利用限流器进行最小区域的故障隔离,但示例方案中限流器的装设数量过多,未能较全面地考虑经济成本因素。U.A. Khan等(2011,2013)基于枚举法及仿真工具研究了电阻型超导限流器在交直流混合微电网中的优化布局问题,其结论说明:合适的布局位置及合理的安装数量能最大程度地提升限流器在微电网中的实用性[35-36]。本课题组(2014)曾提议在含多DG的配电网中应用电压补偿型有源限流器,该型限流器不仅可快速抑制短路电流,还能够降低故障过电压[37]

      总体而言,当前研究工作中多将限流器的应用对象设定为含简单DG的小型微电网系统,以单点PCC微电网为主,没有涉及DG控制策略、储能协调的详细考虑;限流选型上一般沿用于原有装设在大电网的FCL,其应用于微电网的技术经济性有待深入论证;未计及限流-储能技术对微电网的故障穿越问题开展针对性的研究。

    • 中国科学院电工研究所(2007)曾试制了一套超导限流-磁储能系统[38],其集成了超导磁储能及桥路型超导故障限流器。郭文勇等(2012)将该集成系统应用于提高双馈风机的低电压穿越特性,表明其具有很强的适用性[39]。不同于前者在装置硬件上的物理融合,国外学者着重于挖掘限流器和储能装置在动作行为上的协调作用。

      Ngamroo I等(2012-2014)以电阻型超导限流器及超导磁储能系统为对象研究协调控制理论,通过选择不同的应用场合及分别开展仿真验证,发现两者协同作用除可提高分布式电源的故障穿越特性外,还能够明显提升大电网系统的暂态稳定性[40-42]。本课题组(2014)曾在某简单微电网模型下,初步考虑钇钡铜氧(YBCO)电阻型超导限流器与单一储能装置相协调,以提高微电网故障下的暂态特性,亦得到了较好的成效[43]。以上研究可在一定意义上表明,研发及应用限流-储能协调控制技术对于处理电网故障下的暂态问题无疑提供了一条更有效的解决途径。

    • 本文以某简单风储微电网为对象,装设应用一种磁通耦合型故障限流器,并与微电网内配置的超级电容储能开展主动式协调控制,以此验证限流-储能协调控制在强化微电网暂态性能的有效性与可行性。

      图2为基于快速开关的磁通耦合型限流器示意图[44-47]。该型限流器由耦合变压器(Coupling transformer)、超导线圈(Superconducting coil,SC)及快速开关组成。在正常情况下,快速开关为闭合状态,因耦合变压器的双绕组呈反向连接,磁通相互抵消使得其呈现无感耦合特性,且超导线圈为零电阻状态,限流器对系统运行无影响。在发生故障后,触发快速开关动作以解耦磁路连接,且超导线圈因通流超过临界电流值而失超,限流阻抗串入主回路对故障电流进行抑制。

      图  2  基于快速开关的磁通耦合型故障限流器

      Figure 2.  Structure of the Modified Flux-Coupling Type SFCL.

      图3所示为故障限流器在某简单风储微电网中的应用示意图。在微电网故障情况下,限流器的动作信息(诸如快速开关的跳闸指令,同时可融合超导线圈的失超动作信号)将立即或经延迟后触发至储能控制器,使得储能系统执行P-Q/V-f模式转换,控制原理如图4所示,其中G1、G3逻辑开关用于实现P-Q控制,G2、G4用于实现V-f控制。仿真参数如表1所示。

      图  3  故障限流器在某简单风储微电网中的应用

      Figure 3.  Schematic Diagram of a Typical Micro-Grid System Connected to the Main Network Through the SFCL

      图  4  计及故障限流动作的储能变流器控制策略

      Figure 4.  Basic Control Block Diagram of the Energy Storage Device in Consideration of the SFCL′S Action Status

      表 1  仿真系统主要参数

      Table 1.  Main Simulation Parameters of The System Model and the SFCL

      Demonstrated Micro-grid System
      储能系统 1 000 Ah
      同步发电机 50 kW
      风电 260 kW
      负载1/负载2 350 kW/ 150 kW
      电压/频率 0.4 kV/ 50 Hz
      Modified Flux-coupling Type SFCL
      变比(L1/L2) 1
      耦合系数 0.99
      二次侧电感 15 mH
      超导线圈电阻RSC 2 Ω

      为检验所述限流-储能协调方法的有效性,针对微电网发生不同位置的外部短路故障,分别开展了电磁暂态仿真分析,出于简化考虑,本次仿真中的限流信号未经延迟处理,而直接送至储能变流器。如图5图8所示,给出了PCC点电压电流、分布式电源的输出功率与微电网频率特性。

      图  5  F1点故障下PCC电流及电压特性(微电网侧)

      Figure 5.  PCC Characteristics of the Micro-grid System Under the K1 Point Grounded

      图  6  F1点故障下分布式电源的功率输出特性

      Figure 6.  Power Output Characteristics of the Energy Storage and Wind Generation Under The K1 Point Grounded

      图  7  F2点故障下PCC电流及电压特性(微电网侧)

      Figure 7.  PCC Characteristics of the Micro-grid System Under the K2 Point Grounded

      图  8  F2点故障下分布式电源功率及频率特性

      Figure 8.  Power-frequency Characteristics of the Micro-grid System Under the K2 Point Grounded

      结果表明,限流器和储能系统的协同作用可明显地提高微电网在短路故障工况下的暂态性能,具体表现为:降低PCC联络线上的短路电流,改善PCC点的电压跌落,减少网内功率波动(缺额),抑制频率振荡的幅度,提升微电网电能质量水平。从而,在F1点故障下,尽可能地辅助微电网实现故障穿越运行;在F2点故障下,微电网需转为孤岛运行,限流-储能协调动作可保障微电网在并网/孤岛间的平稳暂态过渡。需注意的是,考虑到PCC过流保护动作的快速性及可靠性,关于故障限流率的选取与保护动作方式和具体定值的配合,后续会开展深入研究。

    • 如何系统地诠释高渗透微电网的故障特性及其对配电网稳定运行的影响,明确不同短路工况下微电网故障隔离的基本原则和实用判据,并提供一种切实可行的技术方案来提高微电网在故障穿越及切换至孤岛运行时的暂态性能,对保障高渗透微电网及其所接入配电网的安全可靠运行具有重要意义。

      本文提出了一种结合故障限流器与储能装置的协调控制理念,以期使得微电网在无需孤岛运行时因暂态性能满足技术要求而实现故障穿越;当微电网应转为孤岛运行时,限流-储能的协调有助于降低PCC开关动作时引起的冲击振荡,并实现微电网并网/孤岛间平稳的暂态过渡。相信随着研究工作的进一步开展和深入,研究成果将有力地促进分布式发电和微电网的技术发展,为今后可再生能源的规模化应用奠定坚实的基础。

  • 参考文献 (47)

    目录

      /

      返回文章
      返回