• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电极材料对碳酸丙烯酯冲击击穿性能的影响

施健 蔡汉生 郭宏达

施健, 蔡汉生, 郭宏达. 电极材料对碳酸丙烯酯冲击击穿性能的影响[J]. 南方能源建设, 2017, 4(3): 48-52. doi: 10.16516/j.gedi.issn2095-8676.2017.03.009
引用本文: 施健, 蔡汉生, 郭宏达. 电极材料对碳酸丙烯酯冲击击穿性能的影响[J]. 南方能源建设, 2017, 4(3): 48-52. doi: 10.16516/j.gedi.issn2095-8676.2017.03.009
Jian SHI, Hansheng CAI, Hongda GUO. Electrode Materail Effect on Impulse Breakdown Property of Propylene Carbonate[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(3): 48-52. doi: 10.16516/j.gedi.issn2095-8676.2017.03.009
Citation: Jian SHI, Hansheng CAI, Hongda GUO. Electrode Materail Effect on Impulse Breakdown Property of Propylene Carbonate[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(3): 48-52. doi: 10.16516/j.gedi.issn2095-8676.2017.03.009

电极材料对碳酸丙烯酯冲击击穿性能的影响

doi: 10.16516/j.gedi.issn2095-8676.2017.03.009
基金项目: 

南方电网科学研究院青年基金项目 SEPRI-K166003

详细信息
    作者简介:

    施健(1987),男,安徽池州人,工程师,博士,主要从事高电压方面的研究工作(e-mail)shijian@csg.cn

  • 中图分类号: TM53

Electrode Materail Effect on Impulse Breakdown Property of Propylene Carbonate

  • 摘要: 研究了不锈钢、黄铜与铝三种电极材料对碳酸丙烯酯液体电介质冲击击穿性能的影响。实验结果表明碳酸丙烯酯的冲击击穿电压在平行板不锈钢、黄铜与铝电极对情况下依次递减。为了研究电极材料对碳酸丙烯酯冲击击穿性能的影响机理,利用克尔电光测量方法测量了三种不同电极情况下液体中电场与空间电荷的分布情况。测量结果表明,三种金属材料的空间电荷注入能力铝最强,黄铜次之,不锈钢最弱,而相应地,液体中电场畸变率在不锈钢、黄铜与铝电极对情况下依次增加。这说明了冲击电压作用下三种金属电极材料在碳酸丙烯酯中的电场畸变率差异,造成了冲击击穿特性的不同。
  • 图  1  碳酸丙烯酯电场测量系统

    Fig.  1  Electric field measurement system for propylene carbonate

    图  2  不同电极材料下碳酸丙烯酯中克尔电光图

    Fig.  2  Kerr electric-optic images for propylene carbonate under different electric materials

    图  3  不同电极材料下碳酸丙烯酯中电场分布

    Fig.  3  Electric field distribution of propylene carbonate under different electric materials

    表  1  碳酸丙烯酯负极性冲击击穿实验测量结果

    Tab.  1.   Test results of negative impulse breakdown for propylene carbonate

    极板材料 击穿电压均值/kV 标准差 击穿时间均值/μs
    不锈钢 44.6 1.4 425
    39.2 1.5 507
    36.8 1.1 420
    下载: 导出CSV

    表  2  不同电极材料下碳酸丙烯酯中电场畸变率

    Tab.  2.   Electric field distortion rate for propylene carbonate under different electrodes

    时间/μs (电场畸变率/铝电极)/% (电场畸变率/黄铜电极)/% (电场畸变率/不锈钢电极)/%
    250 13.0 10.9 9.8
    500 20.3 17.2 13.5
    750 23.6 27.8 23.5
    900 29.2 25.0 23.4
    1 150 19.6 18.1 15.2
    1 300 19.1 12.4 7.1
    1 500 17.7 5.8 2.9
    下载: 导出CSV
  • [1] KANG J O, LEE H, and KANG H. Dielectric Characteristics of liquid nitrogen according to the electrode material [J]. Journal of Superconductivity and Novel Magnetism, 2015, 28(3): 1167-1173.
    [2] ZHANG X W, ZAHN M. Kerr electro-optic field mapping study of the effect of charge injection on the impulse breakdown strength of transformer oil [J]. Applied Physics Letters, 2013(103): 1629061.
    [3] WETZ D, MANKOWSKI J, MCCAULEY D, et al. The impact of water conductivity, electrode material, and electrode surface roughness on the pulsed breakdown strength of water [C]//Power Modulator Symposium. Conference Record of the 2006 Twenty-Seventh International, May 14-18, 2006, Washington D.C., U.S.A. U.S.A.: [s.l.]: 104-107.
    [4] ZAHN M, OHKI Y, RHOADS K, et al. Electro-optic charge injection and transport measurement in highly purified water and water/ethylene glycol mixtures [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1985, 20(2): 199-211.
    [5] WAKAMATSU M, KATO K, INOUE N, et al. DC field measurement in oil / pressboard composite insulation system by electro-optic kerr effect [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(6): 942-947.
    [6] ZHANG X W, NOWOCIN J K, ZAHN M. Evaluating the reliability and sensitivity of the Kerr electro-optic field mapping measurements with high-voltage pulsed transformer oil [J]. Applied Physics Letters, 2013, 103(8): 082903.
    [7] LV Y Z, DU Y F, LI C R, et al. TiO2 nanoparticle induced space charge decay in thermal aged transformer oil[J]. Applied Physics Letters, 2013, 102(13): 132902.
    [8] NAKAMURA K, KATO K, KOIDE H, et al. Fundamental property of electric field in rapeseed ester oil based on Kerr electro-optic measurement[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(3): 601-607.
    [9] 马晓薇,彭宗仁.基于克尔电光效应的新型CCD光电测试系统[J].高电压技术,2004,1:19-20.

    MA X W, PENG Z R.A new CCD electro-optic measurement system based on electric-optic effect [J].High Voltage Engineering,2004,1:19-20.
    [10] 杨庆,廖磊,施健,等.基于Kerr电光效应的冲击电压下液体电介质空间电荷高速CCD测量[J].高电压技术,2012,38(4): 797-806.

    YANG Q, LIAO L, SHI J, et al.Measurements of space charge by the high-speed CCD in liquid dielectrics under the impulse voltage based on kerr electro-optic effect [J].High Voltage Engineering,2012,38(4): 797-806.
    [11] TANAKA K AND TAKADA T. Measurement of the 2-dimensional electric field vector in dielectric liquids [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(4): 747-753.
    [12] TANG C, CHEN G, FU M, et al. Space charge behavior in multi-layer oil-paper insulation under different dc voltages and temperatures [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3): 775-784.
  • [1] 陆皓炜, 姜根柱, 王筱蓉.  乙醇氢气预混燃料层流燃烧特性 . 南方能源建设, 2024, 11(): 1-11. doi: 10.16516/j.ceec.2024-179
    [2] 危昊翔, 王筱蓉, 姜根柱, 黄晨峻, 张溟睿.  掺醇生物柴油混合燃料蒸发特性 . 南方能源建设, 2024, 11(6): 1-8. doi: 10.16516/j.ceec.2024-145
    [3] 李保洋.  某近海风电场风机基础选型设计 . 南方能源建设, 2023, 10(4): 166-173. doi: 10.16516/j.gedi.issn2095-8676.2023.04.017
    [4] 牛朝露, 李泽浩, 司马文霞, 孙魄韬, 袁涛, 杨鸣, 方正, 刘奇昌, 金云帆.  用于储能电站热失控预警的热敏涂层材料研究 . 南方能源建设, 2023, 10(5): 106-115. doi: 10.16516/j.gedi.issn2095-8676.2023.05.014
    [5] 卢培, 李小宝, 郑晨旭, 邹璐垚, 王欣瑶, 蒋佳月, 胡鋆, 周兴.  350 MW余热锅炉变工况运行特性分析 . 南方能源建设, 2022, 9(3): 41-49. doi: 10.16516/j.gedi.issn2095-8676.2022.03.005
    [6] 刘博, 裴爱国.  桶型基础气浮拖航特性综述 . 南方能源建设, 2020, 7(2): 81-90. doi: 10.16516/j.gedi.issn2095-8676.2020.02.013
    [7] 陈露东, 徐常, 赵星, 潘英, 张英杰.  贵州典型行业及用户负荷特性分析 . 南方能源建设, 2020, 7(S1): 29-35. doi: 10.16516/j.gedi.issn2095-8676.2020.S1.006
    [8] 徐常, 贺墨琳, 杨成, 张英杰, 熊晓晟.  贵州电网负荷特性影响因素分析 . 南方能源建设, 2020, 7(S1): 36-41. doi: 10.16516/j.gedi.issn2095-8676.2020.S1.007
    [9] 常胜, 李炬添, 张振, 沈云, 王海龙.  海上风电场联合送出优化方案研究 . 南方能源建设, 2019, 6(2): 49-53. doi: 10.16516/j.gedi.issn2095-8676.2019.02.009
    [10] 李红涛, 王宾, 唐广银.  海上风电场设施技术规范综述 . 南方能源建设, 2019, 6(2): 1-6. doi: 10.16516/j.gedi.issn2095-8676.2019.02.001
    [11] 马开志, 周向阳.  山地风电场运输道路设计要点分析 . 南方能源建设, 2018, 5(S1): 172-176. doi: 10.16516/j.gedi.issn2095-8676.2018.S1.031
    [12] 郑明, 王长虹.  海上风电场输电方式研究 . 南方能源建设, 2018, 5(2): 99-108. doi: 10.16516/j.gedi.issn2095-8676.2018.02.014
    [13] 王建武, 谌阳, 赵胜计, 孙帮新, 陈荔.  垂直型直流接地极的电极结构对溢流密度的影响 . 南方能源建设, 2018, 5(S1): 71-76. doi: 10.16516/j.gedi.issn2095-8676.2018.S1.013
    [14] 王潇羽, 贺广零, 李趾扬, 王邦国, 谢晓峰.  钢-泡沫铝-纤维复合结构抗冲击性能数值分析 . 南方能源建设, 2017, 4(1): 113-118,142. doi: 10.16516/j.gedi.issn2095-8676.2017.01.022
    [15] 陈雷, 卢斯煜.  风电场出力特性与集群效应分析方法研究 . 南方能源建设, 2017, 4(1): 31-37. doi: 10.16516/j.gedi.issn2095-8676.2017.01.005
    [16] 周川, 黄亚珏.  广东某海上风电场波浪能资源分析 . 南方能源建设, 2016, 3(4): 119-122. doi: 10.16516/j.gedi.issn2095-8676.2016.04.024
    [17] 元国凯, 朱光涛, 黄智军.  海上风电场施工安装风险管理研究 . 南方能源建设, 2016, 3(S1): 190-193. doi: 10.16516/j.gedi.issn2095-8676.2016.S1.043
    [18] 戎晓洪.  海上风电场防台风措施研究 . 南方能源建设, 2016, 3(S1): 77-81. doi: 10.16516/j.gedi.issn2095-8676.2016.S1.017
    [19] 杨源, 周伟, 汪少勇, 谭江平, 徐龙博.  海上风电场的火灾防护方案设计 . 南方能源建设, 2015, 2(S1): 93-97. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.020
    [20] 项明荣.  纤维增强复合材料加固变电站户外构支架基本力学性能和长期受力性能研究 . 南方能源建设, 2015, 2(S1): 88-92. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.019
  • 加载中
图(3) / 表 (2)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  97
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 刊出日期:  2020-07-18

电极材料对碳酸丙烯酯冲击击穿性能的影响

doi: 10.16516/j.gedi.issn2095-8676.2017.03.009
    基金项目:

    南方电网科学研究院青年基金项目 SEPRI-K166003

    作者简介: 作者简介:施健(1987),男,安徽池州人,工程师,博士,主要从事高电压方面的研究工作(e-mail)shijian@csg.cn

  • 中图分类号: TM53

摘要: 研究了不锈钢、黄铜与铝三种电极材料对碳酸丙烯酯液体电介质冲击击穿性能的影响。实验结果表明碳酸丙烯酯的冲击击穿电压在平行板不锈钢、黄铜与铝电极对情况下依次递减。为了研究电极材料对碳酸丙烯酯冲击击穿性能的影响机理,利用克尔电光测量方法测量了三种不同电极情况下液体中电场与空间电荷的分布情况。测量结果表明,三种金属材料的空间电荷注入能力铝最强,黄铜次之,不锈钢最弱,而相应地,液体中电场畸变率在不锈钢、黄铜与铝电极对情况下依次增加。这说明了冲击电压作用下三种金属电极材料在碳酸丙烯酯中的电场畸变率差异,造成了冲击击穿特性的不同。

English Abstract

施健, 蔡汉生, 郭宏达. 电极材料对碳酸丙烯酯冲击击穿性能的影响[J]. 南方能源建设, 2017, 4(3): 48-52. doi: 10.16516/j.gedi.issn2095-8676.2017.03.009
引用本文: 施健, 蔡汉生, 郭宏达. 电极材料对碳酸丙烯酯冲击击穿性能的影响[J]. 南方能源建设, 2017, 4(3): 48-52. doi: 10.16516/j.gedi.issn2095-8676.2017.03.009
Jian SHI, Hansheng CAI, Hongda GUO. Electrode Materail Effect on Impulse Breakdown Property of Propylene Carbonate[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(3): 48-52. doi: 10.16516/j.gedi.issn2095-8676.2017.03.009
Citation: Jian SHI, Hansheng CAI, Hongda GUO. Electrode Materail Effect on Impulse Breakdown Property of Propylene Carbonate[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(3): 48-52. doi: 10.16516/j.gedi.issn2095-8676.2017.03.009
  • 液体电介质的绝缘性能对于电力系统的安全稳定运行具有重要意义。学者发现高纯水、硝基苯以及变压器油等液体电介质在不同电极材料情况下,其击穿特性有所不同[1,2,3]。由此可见,电极材料是影响液体电介质击穿性能的重要因素,然而其影响机理目前尚不明确。液体电介质的绝缘性能与其内部的电场分布密切相关[4]。研究表明在高电压作用下液体电介质中空间电荷的存在会畸变液体中的电场分布,对液体的绝缘性能产生重要的影响[5,6,7]。测量液体电介质中的电场分布是研究其击穿机理以及降低击穿发生的可能性的前提。

    克尔电光效应法广泛应用于液体电介质的电场分布测量,具有测量精度高、抗电磁干扰能力强的优点[8,9]。文章中我们选用了无色透明,无毒性、克尔常数高的碳酸丙烯酯作为液体电介质,选用不锈钢、黄铜、铝三种金属材料组成电极对,利用克尔电光方法分别测量了冲击电压作用下碳酸丙烯酯不同电极材料下的击穿电压与电场分布情况。根据测量结果,我们分析得到了不同电极材料对碳酸丙烯酯冲击击穿特性的影响机理。

    • 文中选取了不锈钢、黄铜与铝三种金属制成的平行板电极材料,其尺寸为100 mm×12 mm×5 mm,电极之间的间距为3 mm。电极的边缘经过抛光处理以避免边缘放电。文章根据IEC60897标准进行了冲击击穿测试。对于平行板电极,击穿电压不存在极性效应,我们采用标准负极性操作冲击电压(250 μs/2 500 μs)对碳酸丙烯酯进行冲击击穿测试。测试时先从一个较低幅值的冲击电压开始施加,然后以1~2 kV的增幅增加冲击电压的幅值直至击穿发生。为了确保测量结果的准确性,每个幅值的冲击电压至少重复施加3次。相邻的冲击电压之间的时间间隔为2 min,通过示波器来记录击穿电压的幅值与时间,由于间隙为mm级,击穿发生时刻可能在波头或波尾,如果在波头击穿,击穿电压幅值取击穿时刻实际值,如果击穿发生在波尾,击穿电压幅值取峰值。对于每种电极材料,以上的测量过程重复10次,以此求得击穿电压的平均值。

    • 碳酸丙烯酯电场测量系统如图1所示,该测量系统由冲击电压装置、克尔电光测量装置以及光信号接收装置三部分组成。冲击电压波形由马克思发生器产生,经过分压器由示波器测量。由He-Ne激光器发出的波长为633 nm的激光经过扩束镜、起偏器、1/4波片、克尔盒、1/4波片、检偏器,由电荷耦合器件(Charge Coupled Device, CCD)接收。起偏器与检偏器的光轴平行,构成平行偏振。电极的材料、尺寸与击穿实验中相同。CCD的触发信号由冲击电压发生器提供。所有的光学元件放置于光学防震平台上。实验时,实验装置的周围为黑暗的环境以排除外界自然光对实验测量的影响。测量时施加的冲击电压波形为幅值为25 kV的负极性标准操作波。根据克尔效应的原理对由CCD接收得到的电光图进行反算[10],可以得到碳酸丙烯酯在冲击电压作用下的电场分布。

      图  1  碳酸丙烯酯电场测量系统

      Figure 1.  Electric field measurement system for propylene carbonate

    • 表1中所示的为不同电极材料下碳酸丙烯酯的击穿电压性能。如表1中的数据所示,不同电极材料下碳酸丙烯酯的负极性冲击击穿电压不同,不锈钢电极情况下的击穿电压幅值比黄铜电极情况下高13.8%,比铝电极情况下则高21.2%。此外,黄铜电极的情况下击穿电压幅值比铝电极情况下高6.5%。不仅三种不同电极材料下的液体击穿电压不同,液体击穿的时间也不同,这是因为三种电极情况下液体中的空间电荷注入情况不同,导致电场寄畸变程度不同。

      表 1  碳酸丙烯酯负极性冲击击穿实验测量结果

      Table 1.  Test results of negative impulse breakdown for propylene carbonate

      极板材料 击穿电压均值/kV 标准差 击穿时间均值/μs
      不锈钢 44.6 1.4 425
      39.2 1.5 507
      36.8 1.1 420

      图2所示的是由克尔电光测量系统测量得到的CCD电光图,测量原理详见文献[10]。图中的明暗条纹代表等势线。由图中可以看出,电极之间存在明暗条纹,这说明电极之间的电场是不均匀的,存在一定程度的电场畸变。铝、不锈钢与黄铜电极之间的条纹数量分别在1 150 μs、1 300 μs与1 500 μs时减少,这说明了不同的电极材料具有不同的电荷注入能力,这导致了电极之间的电场畸变程度的不同。

      图  2  不同电极材料下碳酸丙烯酯中克尔电光图

      Figure 2.  Kerr electric-optic images for propylene carbonate under different electric materials

      根据克尔效应的原理对图2中的电光图进行反算,可以得到不同电极材料下碳酸丙烯酯在冲击电压作用下电极之间的电场分布情况,如图3所示。对比三种电极材料下液体中的电场分布情况可以看出,相同时刻不同电极之间电场畸变程度有着明显的差异。

      图  3  不同电极材料下碳酸丙烯酯中电场分布

      Figure 3.  Electric field distribution of propylene carbonate under different electric materials

    • 在外施电压的作用下,液体电介质中电极之间存在着电子电场发射、电化学反应以及双电层等复杂的现象,一定量的空间电荷会从电极注入到液体当中[11,12]。这些空间电荷会畸变液体中原来的几何电场分布,减弱电极附近的电场强度而增大液体中的电场强度。根据高斯定理,平行板电极情况下液体中电场分布曲线的斜率与液体中注入的电荷成正比。而液体中空间电荷的存在会畸变液体中的电场分布,液体中空间电荷的量越大,液体中电场的畸变程度越高。因此,我们推断不同金属的电极材料在冲击电压作用下空间电荷的注入能力不同,由此导致了不同电极材料下液体中电场的畸变程度不同。文中定义液体中的电场畸变率D为某一时刻,液体中瞬时电场与平均电场的差值的最大值与平均电场之比,如公式(1)所示。

      ((1))

      根据此定义与图3中的电场分布,我们得到了不同电极材料下不同时刻碳酸丙烯酯中的电场畸变率,如表2所示。从表2可以看出,黄铜电极与不锈钢电极的情况下电场最大畸变发生在750 μs,而铝电极情况下发生在900 μs。大部分的时间范围内,铝电极情况下的电场畸变率最高,黄铜电极情况下次之,而不锈钢电极情况下最低。这意味着在相同的电场作用下,铝电极、黄铜电极与不锈钢电极情况下碳酸丙烯酯中的电场畸变率依次递减。这可能是三种不同材料下碳酸丙烯酯冲击击穿性能差异的原因。

      表 2  不同电极材料下碳酸丙烯酯中电场畸变率

      Table 2.  Electric field distortion rate for propylene carbonate under different electrodes

      时间/μs (电场畸变率/铝电极)/% (电场畸变率/黄铜电极)/% (电场畸变率/不锈钢电极)/%
      250 13.0 10.9 9.8
      500 20.3 17.2 13.5
      750 23.6 27.8 23.5
      900 29.2 25.0 23.4
      1 150 19.6 18.1 15.2
      1 300 19.1 12.4 7.1
      1 500 17.7 5.8 2.9
    • 文章分别测量了碳酸丙烯酯液体电介质在不锈钢、黄铜以及铝电极材料情况下的负极性冲击击穿性能与液体中的电场分布情况。根据实验测量结果,得到了以下结论:

      1)电极材料对碳酸丙烯酯的冲击击穿特性具有重要的影响,铝、黄铜以及不锈钢电极情况下,碳酸丙烯酯的冲击击穿电压依次增大。

      2)不同电极材料在冲击电压作用下空间电荷的注入能力不同,不锈钢、黄铜以及铝电极的电荷注入能力依次减小。

      3)由于电荷注入能力的不同,导致不同电极材料下碳酸丙烯酯中电场畸变程度不同,这是电极材料对碳酸丙烯酯冲击特性差异化的原因。

  • 参考文献 (12)

    目录

      /

      返回文章
      返回